...
首页> 外文期刊>Journal of Physical Oceanography >A Model for the Wind-Driven Current in the Wavy Oceanic Surface Layer: Apparent Friction Velocity Reduction and Roughness Length Enhancement
【24h】

A Model for the Wind-Driven Current in the Wavy Oceanic Surface Layer: Apparent Friction Velocity Reduction and Roughness Length Enhancement

机译:波浪状海洋表层中的风流模型:表观摩擦速度减小和粗糙度增加

获取原文
获取原文并翻译 | 示例
           

摘要

A simple analytical model is developed for the current induced by the wind and modified by surface wind waves in the oceanic surface layer, based on a first-order turbulence closure and including the effect of a vortex force representing the Stokes drift of the waves. The shear stress is partitioned between a component due to shear in the current, which is reduced at low turbulent Langmuir number La-t, and a wave-induced component, which decays over a depth proportional to the dominant wavelength (w). The model reproduces the apparent reduction of the friction velocity and enhancement of the roughness length estimated from current profiles, detected in a number of studies. These effects are predicted to intensify as La-t decreases and are entirely attributed to nonbreaking surface waves. The current profile becomes flatter for low La-t owing to a smaller fraction of the total shear stress being supported by the current shear. Comparisons with the comprehensive dataset provided by the laboratory experiments of Cheung and Street show encouraging agreement, with the current speed normalized by the friction velocity decreasing as La-t decreases and (w) increases if the model is adjusted to reflect the effects of a full wave spectrum on the intensity and depth of penetration of the wave-induced stress. A version of the model where the shear stress decreases to zero over a depth consistent with the measurements accurately predicts the surface current speed. These results contribute toward developing physically based momentum flux parameterizations for the wave-affected boundary layer in ocean circulation models.
机译:基于一阶湍流闭合,并包括代表波浪的斯托克斯漂移的涡旋力的影响,开发了一种简单的分析模型,用于分析由海浪引起的洋流并由海洋表层中的表面风波修改。剪切应力被分配在由于电流剪切而在低湍流朗缪尔数La-t下减小的分量和在与主波长(w)成正比的深度上衰减的波感应分量之间。该模型再现了许多研究中检测到的摩擦速度的明显降低和根据电流曲线估计的粗糙度长度的增加。预计这些影响会随着La-t的降低而加剧,并且完全归因于不破裂的表面波。对于低La-t而言,电流轮廓变得更平坦,这是因为电流剪切所支撑的总剪切应力的比例较小。与Cheung和Street实验室实验提供的综合数据集的比较显示出令人鼓舞的共识,当前速度通过摩擦速度归一化,随La-t减小而减小,而(w)增大(如果模型经过调整以反映完整模型的影响)频谱上波的强度和穿透深度是波引起的应力。该模型的一种形式,即在与测量值一致的深度上,剪应力降至零,可以准确预测表面电流速度。这些结果有助于为海洋环流模型中受波浪影响的边界层开发基于物理的动量通量参数化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号