...
首页> 外文期刊>Journal of Physical Oceanography >The Nature of Eddy Kinetic Energy in the Labrador Sea: Different Types of Mesoscale Eddies, Their Temporal Variability, and Impact on Deep Convection
【24h】

The Nature of Eddy Kinetic Energy in the Labrador Sea: Different Types of Mesoscale Eddies, Their Temporal Variability, and Impact on Deep Convection

机译:拉布拉多海涡动能的性质:不同类型的中尺度涡,它们的时间变异性以及对深对流的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Oceanic eddies are an important component in preconditioning the central Labrador Sea (LS) for deep convection and in restratifying the convected water. This study investigates the different sources and impacts of eddy kinetic energy (EKE) and its temporal variability in the LS with the help of a 52-yr-long hindcast simulation of a 1/20 degrees ocean model. Irminger Rings (IR) are generated in the West Greenland Current (WGC) between 60 degrees and 62 degrees N, mainly affect preconditioning, and limit the northward extent of the convection area. The IR exhibit a seasonal cycle and decadal variations linked to the WGC strength, varying with the circulation of the subpolar gyre. The mean and temporal variations of IR generation can be attributed to changes in deep ocean baroclinic and upper-ocean barotropic instabilities at comparable magnitudes. The main source of EKE and restratification in the central LS are convective eddies (CE). They are generated by baroclinic instabilities near the bottom of the mixed layer during and after convection. The CE have a middepth core and reflect the hydrographic properties of the convected water mass with a distinct minimum in potential vorticity. Their seasonal to decadal variability is tightly connected to the local atmospheric forcing and the associated air-sea heat fluxes. A third class of eddies in the LS are the boundary current eddies shed from the Labrador Current (LC). Since they are mostly confined to the vicinity of the LC, these eddies appear to exert only minor influence on preconditioning and restratification.
机译:海洋涡流是预处理拉布拉多海(LS)进行深对流和重新定形对流水的重要组成部分。这项研究通过52年的1/20度海洋模型的后预报模拟研究了LS中涡动能(EKE)的不同来源和影响及其时间变化。 Irminger环(IR)在西格陵兰洋流(WGC)中产生,介于60度和62度N之间,主要影响预处理,并限制对流区域的向北延伸。 IR显示出一个季节性周期和与WGC强度有关的年代际变化,随亚极回旋的循环而变化。 IR生成的平均和时间变化可归因于深海斜压和上海洋正压不稳定性在相当的范围内的变化。对流涡旋(CE)是中央LS的EKE和再认证的主要来源。它们是由对流过程中和对流后混合层底部附近的斜压不稳定性产生的。 CE具有一个中深度核心,并反映了对流水团的水文特性,而潜在涡度却明显最小。它们的季节变化到年代际变化与当地的大气强迫和相关的海气热通量紧密相关。 LS中的第三类涡流是从拉布拉多电流(LC)产生的边界涡流。由于它们主要限于LC附近,因此这些涡流似乎对预处理和重新定殖仅产生很小的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号