...
首页> 外文期刊>Journal of power sources >Synthesis of graphene-siloxene nanosheet based layered composite materials by tuning its interface chemistry: An efficient anode with overwhelming electrochemical performances for lithium-ion batteries
【24h】

Synthesis of graphene-siloxene nanosheet based layered composite materials by tuning its interface chemistry: An efficient anode with overwhelming electrochemical performances for lithium-ion batteries

机译:通过调整界面化学来合成石墨烯-硅氧烷纳米片基层状复合材料:一种具有压倒性电化学性能的高效阳极,用于锂离子电池

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to its high theoretical storage capacity, two dimensional (2D) silicon nanosheets is the one among the most exciting anode material for the next generation lithium ion (Li-ion) batteries. However, deprived electro-chemical properties due to the huge volume expansion resulting in rapid capacity decay, thereby hindering its commercial application aspect of silicon nanosheet based materials. The present work proposes a novel concept of synthesizing graphene-siloxene (SIG) based multi-layered structures by tuning the interface chemistries of graphene oxide and siloxene sheets derived from topochemical transformation of calcium silicide (CaSi2). Morphological characterization using Field emission scanning electron microscopic and transmission electron microscopy reveal the successful formation of few- to multi-layered SiG composite materials with intercalated/surface grafted siloxene nanosheets on the graphene layers. Owing to its hierarchical composite structure, SiG as anode delivers the first discharge and charge capacity values as high as 3880 mAhg(-1) and 3016 mAhg(-1) respectively measured at the current rate of 205 mAg(-1). Even at high current rate (4.1 Ag-1), SiG composite materials delivers first charge capacity of 1480 mAhg(-1) with good cycling performance (1040 mAhg(-1)) after 1000 cycles. Due to its enhanced lithium storage, cycling stability and rate capability, synthesized SiG composites could be a potential anode candidate for Li-ion batteries.
机译:由于其高的理论存储容量,二维(2D)硅纳米片是下一代锂离子(Li-ion)电池中最令人兴奋的阳极材料之一。然而,由于巨大的体积膨胀而导致缺乏电化学性能,从而导致快速的容量衰减,从而阻碍了其在基于硅纳米片的材料的商业应用方面。本工作提出了一种新的概念,可通过调节源自硅化钙(CaSi2)的拓扑化学转化的氧化石墨烯和氧化硅片的界面化学,来合成基于石墨烯-氧化硅(SIG)的多层结构。使用场发射扫描电子显微镜和透射电子显微镜的形态学表征揭示了在石墨烯层上成功形成了几层到多层SiG复合材料,以及插层/表面接枝的硅氧烷纳米片。由于其分层的复合结构,作为阳极的SiG在205 mAg(-1)的电流速率下提供的首次放电和充电容量值分别高达3880 mAhg(-1)和3016 mAhg(-1)。即使在高电流速率(4.1 Ag-1)下,SiG复合材料在1000次循环后仍可提供1480 mAhg(-1)的首次充电容量,并具有良好的循环性能(1040 mAhg(-1))。由于其增强的锂存储能力,循环稳定性和倍率性能,合成的SiG复合材料可以成为锂离子电池的潜在阳极候选材料。

著录项

  • 来源
    《Journal of power sources》 |2020年第29期|227618.1-227618.11|共11页
  • 作者

  • 作者单位

    VISTAS Dept Chem Chennai 117 Tamil Nadu India;

    Inje Univ Dept Nanosci & Engn Gimhae South Korea;

    VISTAS Dept Chem Chennai 117 Tamil Nadu India|VISTAS CARD Chennai 117 Tamil Nadu India;

    Kyung Hee Univ Dept Chem Engn Yongin South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Topochemical reaction; Hydrosilylation reaction; Silicon nano sheets; Silicon-graphene; Specific capacity; Li-ion battery;

    机译:拓扑化学反应;氢化硅烷化反应;硅纳米片;硅石墨烯;比容量;锂离子电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号