...
首页> 外文期刊>Journal of power sources >Integrating nanostructured Pt-based electrocatalysts in proton exchange membrane fuel cells
【24h】

Integrating nanostructured Pt-based electrocatalysts in proton exchange membrane fuel cells

机译:在质子交换膜燃料电池中积分纳米结构Pt基电催化剂

获取原文
获取原文并翻译 | 示例
           

摘要

Platinum-based nanomaterials remain one of the most effective options as proton exchange membrane fuel cell (PEMFC) cathode electrocatalysts for enhancing the sluggish kinetics of the oxygen reduction reaction (ORR). Their morphology has been greatly improved throughout the last decade, shifting from 2 to 3 nm nanoparticles (NPs) supported on carbon blacks to complex shaped nanostructures (such as nanoframes, octahedra, etc.). These nanostructures take advantage of electronic and structural effects, such as the (i) strain-ligand effect achieved through alloying, (ii) preferential crystallite orientation, or (iii) positive use of the structural defects. Improvement factors in specific activity of up to 60 have been achieved compared to classic Pt NPs in liquid electrolyte, however, such tremendous enhancements do not translate to solid electrolyte, e.g. in PEMFCs. Here, we discuss the PEMFCs-induced limitations for these complex electrocatalysts mainly evolving around the ionomer, i.e. Nafion (R), which (i) exhibits a heterogenous dispersion onto the support surface, (ii) has difficulty impregnating the nanostructure's inner pores (for nanoframes or porous-hollow nanoparticles), and (iii) electrostatically interacts with Pt, therefore displacing the nanoparticles depending upon the PEMFC operation potential. We suggest several options in overcoming these challenges, including (i) functionalizing the support surface with nitrogen moieties, increasing the density of anchoring sites, and thus facilitating the nanostructure dispersion and (ii) initially encapsulating the nanostructures with well-defined ionic liquids and eventually replacing the Nafion (R) in the catalytic layer.
机译:基于铂的纳米材料仍然是质子交换膜燃料电池(PEMFC)阴极电催化剂最有效的选择之一,用于增强氧还原反应的缓慢动力学(ORR)。在过去的十年中,它们的形态得到了大大改善,将炭黑的2至3nm纳米颗粒(NPS)转化为复合形纳米结构(如纳米克拉姆,八面体等)。这些纳米结构利用电子和结构效应,例如通过合金化,(ii)优先微晶取向,或(iii)结构缺陷的阳性使用的(i)菌株 - 配体效应。与液体电解质中的经典Pt NP相比,已经实现了高达60的特定活性的改善因子,然而,这种巨大的增强不会转化为固体电解质,例如,在pemfcs。在这里,我们讨论主要在离聚物周围发展的这些复合电催化剂的PEMFCS诱导的限制,即Nafion,(i)表现出在支撑表面上的异构分散体,(ii)难以浸渍纳米结构的内孔(用于纳米扬叫或多孔中空纳米颗粒)和(III)用PT静电相互作用,因此取决于PEMFC操作电位的纳米颗粒。我们建议克服这些挑战的几个选择,包括(i)用氮气部分官能化支撑表面,增加锚定部位的密度,从而促进纳米结构分散体和(ii)最初用近定定义的离子液体包封纳米结构,最终更换催化层中的Nafion(R)。

著录项

  • 来源
    《Journal of power sources》 |2020年第1期|228516.1-228516.9|共9页
  • 作者单位

    Univ Calif Irvine Chem & Biomol Engn Irvine CA 92697 USA;

    Univ Calif Irvine Chem & Biomol Engn Irvine CA 92697 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号