...
首页> 外文期刊>Journal of power sources >Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop
【24h】

Thermo-electrochemical analysis of lithium ion batteries for space applications using Thermal Desktop

机译:使用Thermal Desktop进行空间应用的锂离子电池的热电化学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-ion batteries (LIBs) are replacing the Nickel-Hydrogen batteries used on the International Space Station (ISS). Knowing that LIB efficiency and survivability are greatly influenced by temperature, this study focuses on the thermo-electrochemical analysis of LIBs in space orbit. Current finite element modeling software allows for advanced simulation of the thermo-electrochemical processes; however the heat transfer simulation capabilities of said software suites do not allow for the extreme complexities of orbital-space environments like those experienced by the ISS. In this study, we have coupled the existing thermo-electrochemical models representing heat generation in LIBs during discharge cycles with specialized orbital-thermal software, Thermal Desktop (TD). Our model's parameters were obtained from a previous thermo-electrochemical model of a 185 Amp-Hour (Ah) LIB with 1-3 C (C) discharge cycles for both forced and natural convection environments at 300 K. Our TD model successfully simulates the temperature vs. depth-of-discharge (DOD) profiles and temperature ranges for all discharge and convection variations with minimal deviation through the programming of FORTRAN logic representing each variable as a function of relationship to DOD. Multiple parametrics were considered in a second and third set of cases whose results display vital data in advancing our understanding of accurate thermal modeling of LIBs.
机译:锂离子电池(LIB)取代了国际空间站(ISS)上使用的镍氢电池。知道LIB的效率和生存能力受温度的影响很大,本研究着重于空间轨道上LIB的热电化学分析。当前的有限元建模软件可以对热电化学过程进行高级仿真。但是,上述软件套件的传热模拟功能无法像ISS所经历的那样,使轨道空间环境极端复杂。在这项研究中,我们将现有的热电化学模型与专用轨道热软件Thermal Desktop(TD)结合在一起,这些模型代表了放电循环中LIB的热量生成。我们的模型参数是从先前的185 Amp-Hour(Ah)LIB的热电化学模型获得的,在300 K的强制和自然对流环境下,它们的放电周期为1-3 C(C)。我们的TD模型成功地模拟了温度通过对代表每个变量与DOD关系的函数的FORTRAN逻辑进行编程,可以使所有放电和对流变化的最大放电深度(DOD)曲线和温度范围变化最小。在第二和第三组案例中考虑了多个参数,这些案例的结果显示了重要的数据,有助于我们进一步理解LIB的精确热模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号