首页> 外文期刊>Journal of Ship Research >Development of a Simplified Procedure for the Determination of the Ultimate Load and Associated Spindle Torque of Propeller Blades
【24h】

Development of a Simplified Procedure for the Determination of the Ultimate Load and Associated Spindle Torque of Propeller Blades

机译:确定螺旋桨叶片极限载荷和相关主轴转矩的简化程序的开发

获取原文
获取原文并翻译 | 示例
           

摘要

Blade deflection observed in experiments regarding the ultimate strength of controllable pitch propeller blades does not agree with the one that is assumed in the load case for the blade failure load currently defined in the Polar Class Rules. The reason is that a failure of the blade tip due to large plastic deformation is not taken into account, but can occur in reality if the load is applied relatively close to the trailing edge of skewed propellers. The plastic blade deformation can be computed by numerical simulations using an elastic-plastic material curve. These simulations, however, are time consuming and, hence, unpractical in the daily design process of propeller blades. Therefore, a simplified approach to determine the ultimate load and the associated spindle torque of the blade is presented. It requires elastic finite element (FE) analyses with varying point of load application, geometrical data, and a simplified material curve. The critical blade section is determined from highly stressed locations found in the elastic FE analysis. Afterward, the ultimate bending moment which the section can carry is determined by assuming a linear strain distribution over the thickness and a definite limit strain on the pressure surface. This allows the stress distribution to be transferred directly from the material curve. The ultimate load is determined by integrating the stress distribution over the section thickness and along the chord length, the latter in a simplified way. The approach is supported by various numerical simulations showing the fundamental elastic-plastic behavior of propeller blades and their response due to superimposed bending and torsional loads. In conclusion, the ultimate strength is mainly controlled by bending loads and the approach considers a failure of the blade tip, leading to more realistic spindle torques compared to the approach in the Polar Class Rules.
机译:在实验中观察到的有关可控螺距螺旋桨叶片极限强度的叶片挠度与极地类别规则中当前定义的叶片失效载荷在载荷情况下假定的挠度不一致。原因是未考虑由于大的塑性变形而导致的叶尖故障,但实际上如果施加的载荷相对偏斜的螺旋桨后缘相对较近,则可能会发生这种情况。可以通过使用弹塑性材料曲线的数值模拟来计算塑性叶片的变形。然而,这些模拟很费时,因此在螺旋桨叶片的日常设计过程中不切实际。因此,提出了确定叶片的极限载荷和相关主轴转矩的简化方法。它要求弹性有限元(FE)分析具有不同的载荷点应用,几何数据和简化的材料曲线。关键叶片截面是从弹性有限元分析中发现的高应力位置确定的。然后,通过假定厚度上的线性应变分布和压力面上的确定极限应变来确定截面可以承受的极限弯矩。这允许应力分布直接从材料曲线传递。极限载荷通过积分截面厚度和沿弦长的应力分布来确定,弦长采用简化的方式。该方法得到各种数值模拟的支持,这些数值模拟显示了螺旋桨叶片的基本弹塑性行为及其由于叠加弯曲和扭转载荷而产生的响应。总之,极限强度主要由弯曲载荷控制,该方法考虑了叶片尖端的故障,与极地分类规则中的方法相比,导致了更切合实际的主轴扭矩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号