首页> 外文期刊>Journal of Spacecraft and Rockets >Large-Scale Multidisciplinary Optimization of a Small Satellite's Design and Operation
【24h】

Large-Scale Multidisciplinary Optimization of a Small Satellite's Design and Operation

机译:小型卫星设计与运行的大规模多学科优化

获取原文
获取原文并翻译 | 示例
           

摘要

The design of satellites and their operation is a complex task that involves a large number of variables and multiple engineering disciplines. Thus, it could benefit from the application of multidisciplinary design optimization, but previous efforts have been hindered by the complexity of the modeling and implementation, discontinuities in the design space, and the wide range of time scales. We address these issues by applying a new mathematical framework for gradient-based multidisciplinary optimization that automatically computes the coupled derivatives of the multidisciplinary system via a generalized form of the adjoint method. The modeled disciplines are orbit dynamics, attitude dynamics, cell illumination, temperature, solar power, energy storage, and communication. Many of these disciplines include functions with discontinuities and nonsmooth regions that are addressed to enable a numerically exact computation of the derivatives for all of the modeled variables. The wide-ranging time scales in the design problem, spanning 30 s to one year,' are captured through a combination of multipoint optimization and the use of a small time step in the analyses. Optimizations involving over 25,000 design variables and 2,2 million state variables require 100 h to converge three and five orders of magnitude in optimality and feasibility, respectively. The results show that the geometric design variables yield a 40% improvement in the total data downloaded, which is the objective function, and the operational design variables yield another 40 % improvement This demonstrates not only the value in this approach for the design of satellites and their operation, but also promise for its application to the design of other large-scale engineering systems.
机译:卫星的设计及其运行是一项复杂的任务,涉及大量变量和多个工程学科。因此,它可以从多学科设计优化的应用中受益,但是先前的努力由于建模和实现的复杂性,设计空间的不连续性以及广泛的时间尺度而受到阻碍。我们通过为基于梯度的多学科优化应用新的数学框架来解决这些问题,该数学框架通过伴随方法的广义形式自动计算多学科系统的耦合导数。建模的学科是轨道动力学,姿态动力学,电池照明,温度,太阳能,能量存储和通信。这些学科中的许多学科都包含具有不连续性和非光滑区域的函数,这些函数旨在实现对所有模型变量的导数进行精确的数值计算。通过将多点优化和分析中使用较小的时间步结合起来,可以捕获设计问题中范围广泛的时间尺度,范围从30 s到一年不等。涉及25,000多个设计变量和220万个状态变量的优化需要100小时才能分别在最优性和可行性上收敛三个和五个数量级。结果表明,几何设计变量将下载的总数据(目标函数)提高了40%,而运营设计变量又将下载的数据提高了40%。这不仅证明了这种方法对卫星设计的价值,而且它们的运行,也有望将其应用于其他大型工程系统的设计中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号