首页> 外文期刊>Journal of Spacecraft and Rockets >Arc-Jet Testing of a Variable-Transpiration-Cooled and Uncoated Carbon–Carbon Nose Cone
【24h】

Arc-Jet Testing of a Variable-Transpiration-Cooled and Uncoated Carbon–Carbon Nose Cone

机译:可变蒸腾冷却且无涂层的碳-碳鼻锥的Arc-Jet测试

获取原文
获取原文并翻译 | 示例
           

摘要

The last decade has witnessed a considerable effort in the development of materials and structures for reusable thermal protection systems with the final goal of enabling long-duration hypersonic flights and more affordable access to space by multiple reuse of recoverable rocket stages. While the development of materials such as carbon-based and silicon-based ablators has extended the typical lifespan of heat shields for extremely high heating-rate environments, the limited reusability yet prevents their use for the aforementioned applications and, therefore, active cooling techniques have to be considered to preserve the thermostructural integrity of thermal protection systems. For all of these reasons, active cooling of thermal protection systems is required and transpiration cooling has been demonstrated to be one of the most promising cooling strategies in terms of coolant mass saving and minimum disturbances of the external flow. The prototype heat shield used for the experiment on variable transpiration cooling is an axisymmetric uncoated carbon-carbon cone having tailored porosity and variable thickness prescribed at the manufacturing level in order to reproduce a variable blowing profile. The high-enthalpy test demonstrated the capability of transpiration cooling to preserve the cone, characterized by a 0.25-in. radius of curvature, for approximately 92s while being exposed to a peak heating rate of 637 BTU/(ft2.s) (stagnation region). Heat shield failure was detected after 92s due to a high-temperature flow leak inside the sheeting sleeve of the coolant line upstream the sample.
机译:过去十年见证了可重复使用的热防护系统的材料和结构开发方面的巨大努力,其最终目标是通过多次重复使用可回收的火箭级来实现长时间的高超音速飞行并以更实惠的方式进入太空。尽管诸如碳基和硅基烧蚀器之类的材料的开发已经延长了隔热罩在极高加热速率环境下的典型使用寿命,但有限的可重复使用性仍然阻碍了它们在上述应用中的使用,因此,主动冷却技术具有可以考虑保留热保护系统的热结构完整性。出于所有这些原因,就节省冷却剂质量和最小化外部流干扰而言,要求对热保护系统进行主动冷却,并且蒸腾冷却已被证明是最有前途的冷却策略之一。用于可变蒸腾冷却实验的原型挡热板是轴对称的无涂层碳-碳锥,在制造水平上具有定制的孔隙率和可变厚度,以便再现可变的吹塑轮廓。高焓测试证明了蒸腾冷却的能力,以保持圆锥体为特征(0.25英寸)。暴露于637 BTU /(ft2.s)的峰值加热速率(停滞区域)时,曲率半径大约持续92s。在92秒后,由于样品上游冷却剂管线的薄板套管内部发生高温流漏,检测到隔热屏故障。

著录项

  • 来源
    《Journal of Spacecraft and Rockets》 |2019年第3期|780-788|共9页
  • 作者

    Gulli S.; Maddalena L.;

  • 作者单位

    Univ Texas Arlington, Aerodynam Res Ctr, Aerosp Engn, 500 W First St, Arlington, TX 76019 USA;

    Univ Texas Arlington, Aerodynam Res Ctr, 500 W First St, Arlington, TX 76019 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号