...
首页> 外文期刊>Journal of the American Chemical Society >Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO_3)
【24h】

Single-Crystal Thin Films of Cesium Lead Bromide Perovskite Epitaxially Grown on Metal Oxide Perovskite (SrTiO_3)

机译:在金属氧化物钙钛矿(SrTiO_3)上外延生长的铯溴化钙铅钙钛矿的单晶薄膜。

获取原文
获取原文并翻译 | 示例
           

摘要

High-quality metal halide perovskite single crystals have low defect densities and excellent photophysical properties, yet thin films are the most sought after material geometry for optoelectronic devices. Perovskite single-crystal thin films (SCTFs) would be highly desirable for high-performance devices, but their growth remains challenging, particularly for inorganic metal halide perovskites. Herein, we report the facile vapor-phase epitaxial growth of cesium lead bromide perovskite (CsPbBr_3) continuous SCTFs with controllable micrometer thickness, as well as nanoplate arrays, on traditional oxide perovskite SrTiO_3(100) substrates. Heteroepitaxial single-crystal growth is enabled by the serendipitous incommensurate lattice match between these two perovskites, and overcoming the limitation of island-forming Volmer-Weber crystal growth is critical for growing large-area continuous thin films. Time-resolved photoluminescence, transient reflection spectroscopy, and electrical transport measurements show that the CsPbBr_3 epitaxial thin film has a slow charge carrier recombination rate, low surface recombination velocity (10~4 cm s~(-1)), and low defect density of 10~(12) cm~(-3), which are comparable to those of CsPbBr_3 single crystals. This work suggests a general approach using oxide perovskites as substrates for heteroepitaxial growth of halide perovskites. The high-quality halide perovskite SCTFs epitaxially integrated with multifunctional oxide perovskites could open up opportunities for a variety of high-performance optoelectronics devices.
机译:高质量的金属卤化物钙钛矿单晶具有低缺陷密度和出色的光物理性质,然而薄膜是光电器件最需要的材料几何形状。钙钛矿单晶薄膜(SCTF)是高性能器件的理想之选,但其增长仍然具有挑战性,尤其是对于无机金属卤化物钙钛矿而言。在这里,我们报告了传统的氧化物钙钛矿SrTiO_3(100)衬底上具有可控制的微米厚度的溴化铯铯钙钛矿(CsPbBr_3)连续SCTF的容易气相外延生长。这两个钙钛矿之间偶然的不相称的晶格匹配使得异质外延单晶生长成为可能,克服孤岛形成的Volmer-Weber晶体生长的局限性对于生长大面积连续薄膜至关重要。时间分辨的光致发光,瞬态反射光谱和电传输测量表明,CsPbBr_3外延薄膜具有慢的载流子复合率,低的表面复合速度(10〜4 cm s〜(-1))和低的缺陷密度。 10〜(12)cm〜(-3),与CsPbBr_3单晶相当。这项工作提出了使用氧化物钙钛矿作为卤化物钙钛矿异质外延生长基质的一般方法。与多功能氧化物钙钛矿外延集成的高质量卤化物钙钛矿SCTF可以为各种高性能光电器件打开机遇。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2017年第38期|13525-13532|共8页
  • 作者单位

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States,International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, P. R China;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronic Science, Hunan University, Changsha 410082, P. R. China;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronic Science, Hunan University, Changsha 410082, P. R. China;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, P. R China;

    International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, P. R China;

    Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronic Science, Hunan University, Changsha 410082, P. R. China;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

    Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号