...
首页> 外文期刊>Journal of the American Chemical Society >Fabrication of a Core-Shell-Type Photocatalyst via Photodeposition of Group Ⅳ and Ⅴ Transition Metal Oxyhydroxides: An Effective Surface Modification Method for Overall Water Splitting
【24h】

Fabrication of a Core-Shell-Type Photocatalyst via Photodeposition of Group Ⅳ and Ⅴ Transition Metal Oxyhydroxides: An Effective Surface Modification Method for Overall Water Splitting

机译:通过Ⅳ和Ⅴ族过渡金属羟基氧化物的光沉积制备核壳型光催化剂:一种有效的表面改性总水分解方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The design of optimal surface structures for photocatalysts is a key to efficient overall water splitting into H_2 and O_2. A unique surface modification method was devised for a photocatalyst to effectively promote overall water splitting. Photodeposition of amorphous oxyhydroxides of group Ⅳ and Ⅴ transition metals (Ti, Nb, Ta) over a semiconductor photocatalyst from corresponding water-soluble metal peroxide complexes was examined. In this method, amorphous oxyhydroxide covered the whole surface of the photocatalyst particles, creating a core-shell structure. The water splitting behavior of the novel core-shell-type photocatalyst in relation to the permeation behavior of the coating layer was investigated in detail. Overall water splitting proceeded successfully after the photodeposition, owing to the prevention of the reverse reaction. The photodeposited oxyhydroxide layers were found to function as molecular sieves, selectively filtering reactant and product molecules. By exploiting the selective permeability of the coating layer, redox reactions on the photocatalyst surface could be suitably controlled, which resulted in successful overall water splitting.
机译:设计光催化剂的最佳表面结构是有效将总水分解为H_2和O_2的关键。设计了一种独特的表面改性方法用于光催化剂,以有效促进整体水分解。考察了由相应的水溶性金属过氧化物配合物在半导体光催化剂上光沉积Ⅳ和Ⅴ族过渡金属(Ti,Nb,Ta)的非晶态羟基氧化物的情况。在该方法中,无定形羟基氧化物覆盖了光催化剂颗粒的整个表面,形成了核-壳结构。详细研究了新型核-壳型光催化剂的水分解行为与涂层渗透行为的关系。由于防止了逆反应,在光淀积后总的水分解成功地进行了。发现光沉积的羟基氧化物层起分子筛的作用,选择性过滤反应物和产物分子。通过利用涂层的选择性渗透性,可以适当地控制光催化剂表面上的氧化还原反应,这导致成功的总水分解。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2015年第30期|9627-9634|共8页
  • 作者单位

    Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba-city, Ibaraki 305-0044, Japan;

    Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba-city, Ibaraki 305-0044, Japan;

    Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, 113-8656, Japan,Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), 5-1-5 Kashiwanoha, Kashiwa-city, Ciba 227-8589, Japan;

    Institute of Engineering Innovation, School of Engineering, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, 113-8656, Japan;

    Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba-city, Ibaraki 305-0044, Japan,Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku 113-8656, Japan,Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), 5-1-5 Kashiwanoha, Kashiwa-city, Ciba 227-8589, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号