...
首页> 外文期刊>Journal of the American Chemical Society >Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression
【24h】

Squeezing All Elements in the Periodic Table: Electron Configuration and Electronegativity of the Atoms under Compression

机译:挤压周期表中的所有元素:受压原子的电子构型和负电性

获取原文
获取原文并翻译 | 示例
           

摘要

We present a quantum mechanical model capable of describing isotropic compression of single atoms in a non-reactive neon-like environment. Studies of 93 atoms predict drastic changes to ground-state electronic configurations and electronegativity in the pressure range of 0-300 GPa. This extension of atomic reference data assists in the working of chemical intuition at extreme pressure and can act as a guide to both experiments and computational efforts. For example, we can speculate on the existence of pressure-induced polarity (red-ox) inversions in various alloys. Our study confirms that the filling of energy levels in compressed atoms more closely follows the hydrogenic aufbau principle, where the ordering is determined by the principal quantum number. In contrast, the Madelung energy ordering rule is not predictive for atoms under compression. Magnetism may increase or decrease with pressure, depending on which atom is considered. However, Hund's rule is never violated for single atoms in the considered pressure range. Important (and understandable) electron shifts, s - p, s - d, and d - f are essential chemical and physical consequences of compression. Among the specific intriguing changes predicted are an increase in the range between the most and least electronegative elements with compression; a rearrangement of electronegativities of the alkali metals with pressure, with Na becoming the most electropositive s(1) element (while Li becomes s - p group element and K and heavier become transition metals); phase transitions in Ca, Sr, and Ba correlating well with transitions; spin-reduction in all d-block atoms for which the valence d-shell occupation is d(n) (4 = n = 8); d - f transitions in Ce, Dy, and Cm causing Ce to become the most electropositive element of the f-block; f - d transitions in Ho, Dy, and Tb and a s - f transition in Pu. At high pressure Sc and Ti become the most electropositive elements, while Ne, He, and F remain the most electronegative ones.
机译:我们提出了一种量子力学模型,能够描述非反应性霓虹灯状环境中单个原子的各向同性压缩。对93个原子的研究预测,在0-300 GPa的压力范围内,基态电子构型和电负性会发生剧烈变化。原子参考数据的这种扩展有助于在极端压力下进行化学直觉的工作,并且可以充当实验和计算工作的指南。例如,我们可以推测各种合金中是否存在压力引起的极性(氧化还原)反转。我们的研究证实,压缩原子中能级的填充更紧密地遵循氢奥夫堡原理,其中顺序由主量子数确定。相反,马德隆能量排序规则不能预测压缩下的原子。磁性可能随压力增加或减少,这取决于所考虑的原子。但是,对于所考虑的压力范围内的单个原子,从不违反洪德定律。重要的(也是可以理解的)电子位移s-> p,s-> d和d-> f是压缩的重要化学和物理结果。在预测的特定有趣变化中,最大负电性元素之间的压缩范围增大。碱金属的电负性随压力而重排,其中Na成为最正电的s(1)元素(而Li变成s-> p族元素,而K和更重的元素成为过渡金属); Ca,Sr和Ba中的相变与相变很好相关;所有价d壳占据为d(n)的d嵌段原子的自旋还原(4 <= n <= 8); d-> Ce,Dy和Cm中的f跃迁导致Ce成为f嵌段中最具正电性的元素; Ho,Dy和Tb中的f-> d跃迁和Pu中的s-> f跃迁。在高压下,Sc和Ti成为最具正电性的元素,而Ne,He和F仍是最具负电性的元素。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第26期|10253-10271|共19页
  • 作者单位

    Chalmers Univ Technol, Dept Chem & Chem Engn, SE-41296 Gothenburg, Sweden;

    Univ Parma, Dept Chem Sci Life Sci & Environm Sustainabil, I-43124 Parma, Italy;

    Cornell Univ, Lab Atom & Solid State Phys, Ithaca, NY 14853 USA;

    Cornell Univ, Baker Lab, Dept Chem & Chem Biol, Ithaca, NY 14853 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号