【24h】

On Euclidean tight 4-designs

机译:关于欧几里得紧4设计

获取原文
获取原文并翻译 | 示例
           

摘要

A spherical t-design is a finite subset X in the unit sphere S~(n-1) is contained in R~n which replaces the value of the integral on the sphere of any polynomial of degree at most t by the average of the values of the polynomial on the finite subset X. Generalizing the concept of spherical designs, Neumaier and Seidel (1988) defined the concept of Euclidean t-design in R~n as a finite set X in R~n for which ∑_(i=1)~p(w(X_i)/(|S_i|)) ∫_(S_i) f(x)dσ_i(x) = ∑_(x∈X) w(x)f(x) holds for any polynomial f(x) of deg(f) ≤ t, where {S_i, 1 ≤ i ≤ p} is the set of all the concentric spheres centered at the origin and intersect with X, X_i = X ∩S_i, and w: X → R_( >0) is a weight function of X. (The case of X is contained in S~(n-1) and with a constant weight corresponds to a spherical t-design.) Neumaier and Seidel (1988), Delsarte and Seidel (1989) proved the (Fisher type) lower bound for the cardinality of a Euclidean 2e-design. Let Y be a subset of R~n and let P_e (Y) be the vector space consisting of all the polynomials restricted to Y whose degrees are at most e. Then from the arguments given by Neumaier-Seidel and Delsarte-Seidel, it is easy to see that |X| ≥ dim(P_e(S)) holds, where S = ∪_(i=1)~p S_i. The actual lower bounds proved by Delsarte and Seidel are better than this in some special cases. However as designs on S, the bound dim(P_e(S)) is natural and universal. In this point of view, we call a Euclidean 2e-design X with |X| = dim(P_e(S)) a tight 2e-design on p concentric spheres. Moreover if dim(P_e(S)) = dim(P_e(R~n))(= (_e~(n+e))) holds, then we call X a Euclidean tight 2e-design. We study the properties of tight Euclidean 2e-designs by applying the addition formula on the Euclidean space. Furthermore, we give the classification of Euclidean tight 4-designs with constant weight. It is possible to regard our main result as giving the classification of rotatable designs of degree 2 in R~n in the sense of Box and Hunter (1957) with the possible minimum size (_2~(n+2) ). We also give examples of nontrivial Euclidean tight 4-designs in R~2 with nonconstant weight, which give a counterexample to the conjecture of Neumaier and Seidel (1988) that there are no nontrivial Euclidean tight 2e-designs even for the nonconstant weight case for 2e ≥ 4.
机译:球面t设计是R〜n中包含的单位球面S〜(n-1)中的有限子集X,它用t的平均值替换最多t个多项式的球面上的积分值。 Neumaier和Seidel(1988)概括了球形设计的概念,将R〜n中的欧几里得t-设计的概念定义为R〜n中的有限集X,为此∑_(i = 1)〜p(w(X_i)/(| S_i |))∫_(S_i)f(x)dσ_i(x)= ∑_(x∈X)w(x)f(x)成立deg(f)≤t的f(x),其中{S_i,1≤i≤p}是所有同心球的集合,所有同心球以原点为中心并与X相交,X_i = X∩S_i,并且w:X→ R_(> 0)是X的权重函数。(X的情况包含在S〜(n-1)中,并且具有恒定的权重对应于球形t设计。)Neumaier and Seidel(1988),Delsarte和Seidel(1989)证明了欧几里德2e设计基数的(Fisher型)下界。令Y为R_n的子集,令P_e(Y)为向量空间,该向量空间包含所有受限于Y且其阶数最大为e的多项式。然后从Neumaier-Seidel和Delsarte-Seidel给出的论证中,很容易看出| X |。 ≥dim(P_e(S))成立,其中S =∪_(i = 1)〜p S_i。在某些特殊情况下,由Delsarte和Seidel证明的实际下界比这更好。但是,在S上进行设计时,绑定的dim(P_e(S))是自然且通用的。从这个角度来看,我们称欧几里德2e-design X为| X |。 = dim(P_e(S))在p个同心球上进行严格的2e设计。此外,如果dim(P_e(S))= dim(P_e(R〜n))(=(_e〜(n + e)))成立,那么我们称X为欧几里得紧2e设计。我们通过在欧几里得空间上应用加法公式来研究紧密欧几里德2e设计的性质。此外,我们给出了具有恒定权重的欧几里得紧4-设计的分类。可以认为我们的主要结果是在Box和Hunter(1957)的意义上给出R〜n中2级可旋转设计的分类,并具有可能的最小尺寸(_2〜(n + 2))。我们还给出了R〜2中具有非恒定权重的非平凡欧几里得紧4e设计的示例,这与Neumaier和Seidel(1988)的推论相反,即即使对于非恒定重量情况,也没有非平凡的欧几里得紧2e设计。 2e≥4。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号