首页> 外文期刊>Journal of the Mechanics and Physics of Solids >Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale
【24h】

Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale

机译:数值模拟与纳米压痕相结合确定中晶单晶铜的力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Constitutive laws are critical in the investigation of mechanical behavior of single crystal or polycrystalline materials in applications spanning from microscale to macroscale. In this investigation, a combined FEM simulation and experimental nanoindentation approach was taken to determine the mechanical behavior of single crystal copper incorporating the mesoplastic constitutive model. This model was implemented in a user-defined subroutine in 3D ABAQUS/Explicit code. Nanoindentation was modeled using the multiscale modeling technique involving mesoplasticity and elasticity, i.e., mesoplastic constitutive model was used near the local nanoindentation region (where the dislocations are generated) while elastic constitutive model was used in rest of the region in the workmaterial. The meso-mechanical behavior of the crystalline structure and the effect of the mesoplastic parameters on the nanoindentation load-displacement relationships were investigated in the FEM analysis. Nanoindentation tests were conducted on single crystal copper to determine load-displacement relationships. Appropriate mesoplastic parameters were determined by fitting the simulated load-displacement curves to the experimental data. The mesoplastic model, with appropriate parameters, was then used to determine the stress-strain relationship of a single crystal copper at meso-scale. The effect of indenter radius (3.4-1000 μm) on material hardness under nanoindentation was simulated and found to match the experimental data for several indenter radii (3.4, 10 and 500 μm). A comparison of the topographies of nanoindentation impressions in the experiments with FEM results showed a reasonably good agreement.
机译:在研究从微观到宏观应用的单晶或多晶材料的力学行为时,本构定律至关重要。在这项研究中,采用了有限元模拟和实验纳米压痕相结合的方法来确定结合了中塑性本构模型的单晶铜的力学行为。该模型在3D ABAQUS / Explicit代码的用户定义子例程中实现。使用涉及中塑性和弹性的多尺度建模技术对纳米压痕进行建模,即在局部纳米压痕区域(产生位错)附近使用中塑性本构模型,而在工作材料的其余区域中使用弹性本构模型。在有限元分析中研究了晶体结构的细观力学行为以及中塑性参数对纳米压痕载荷-位移关系的影响。在单晶铜上进行了纳米压痕测试,以确定载荷-位移关系。通过将模拟的载荷-位移曲线拟合到实验数据来确定适当的中塑参数。然后使用具有适当参数的中塑性模型确定中尺度单晶铜的应力-应变关系。模拟了压痕半径(3.4-1000μm)对纳米压痕下材料硬度的影响,发现该压痕半径与几种压痕半径(3.4、10和500μm)的实验数据相匹配。在有限元结果的实验​​中对纳米压痕印象的形貌进行了比较,显示出相当好的一致性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号