首页> 外文期刊>Journal of thermal stresses >Thermal-mechanical analysis for confined HMX-based polymer-bonded explosives
【24h】

Thermal-mechanical analysis for confined HMX-based polymer-bonded explosives

机译:基于HMX的密闭聚合物粘结炸药的热力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

It is known that the reaction rate of the thermal decomposition of polymer-bonded explosives exposed to cook-off has a certain relation with temperature, confining pressure and some other factors, which were verified by many experiments. Temperature-dominated thermal-decomposition models were developed for various high explosives and applied to study their decomposition process, such as HMX- and TATB-based polymer-bonded explosives. These models have reasonable accuracy. For example, the multistep thermal-decomposition model of PBX 9501 (which consists of 95% HMX, 2.5% Estane and 2.5% BDNPA/F) proposed by Tarver considers decomposition of both HMX and polymer binders. The temperature-dominated thermal-decomposition model only applies to preignition thermal decomposition. After ignition occurs, the dominant mechanism of the reaction transforms to deflagration and subsequent explosion, where the effect of pressure can no longer be neglected. Furthermore, the time scale of deflagration and explosion (millisecond or microsecond) differs significantly from the time scale of slow thermal decomposition (hours or minutes). The numerical model of postignition phenomenon (deflagration and final explosion) is still under investigation and is far from maturity. The predicted violence scale resulting from thermal explosion does not agree with experiment very well. An alternative method is to conduct a thermal-mechanical analysis for preignition stage, which takes advantage of a developed temperature-dominated thermal-decomposition model, and to analyze the stress caused by quasi-static thermal expansion. Herein, a thermal-mechanical analysis is implemented for a one-dimensional time-to-explosion experiment (ODTX) and a scaled thermal explosion experiment (STEX) with HMX-based polymer-bonded explosives inside using the finite element method. Then, the finite element model is applied to investigate the thermal decomposition of PBX 9501 inside an explosive device exposed to cook-off. The regions that have maximum temperature, maximum hydrostatic pressure and maximum von Mises stress are identified based on simulation results, which can benefit future improvement of the explosive device.
机译:众所周知,暴露于蒸煮的聚合物粘结炸药的热分解反应速率与温度,围压和其他一些因素有一定的关系,许多实验已经证明了这一点。针对各种高能炸药开发了以温度为主导的热分解模型,并将其用于研究其分解过程,例如基于HMX和TATB的聚合物粘结炸药。这些模型具有合理的准确性。例如,Tarver提出的PBX 9501(由95%HMX,2.5%Estane和2.5%BDNPA / F组成)的多步热分解模型考虑了HMX和聚合物粘合剂的分解。温度主导的热分解模型仅适用于点火前的热分解。发生点火后,反应的主要机理转变为爆燃和随后的爆炸,此时压力的影响不再被忽略。此外,爆燃和爆炸的时间尺度(毫秒或微秒)与缓慢的热分解的时间尺度(小时或分钟)明显不同。后燃现象(爆燃和最终爆炸)的数值模型仍在研究中,远未成熟。热爆炸导致的预计暴力规模与实验不太吻合。一种替代方法是对点火前阶段进行热力学分析,该分析利用已开发的温度主导的热分解模型,并分析准静态热膨胀引起的应力。在此,使用有限元方法对内部基于HMX的聚合物粘结炸药的一维爆炸时间实验(ODTX)和大规模热爆炸实验(STEX)进行了热力学分析。然后,应用有限元模型研究暴露于蒸煮的爆炸装置内部PBX 9501的热分解。根据仿真结果确定了温度最高,静水压力最大和冯·米塞斯应力最大的区域,这有利于爆炸装置的未来改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号