首页> 外文期刊>Journal of turbomachinery >On-Line Temperature Measurement Inside a Thermal Barrier Sensor Coating During Engine Operation
【24h】

On-Line Temperature Measurement Inside a Thermal Barrier Sensor Coating During Engine Operation

机译:发动机运行期间热障传感器涂层内部的在线温度测量

获取原文
获取原文并翻译 | 示例
           

摘要

Existing thermal barrier coatings (TBCs) can be adapted enhancing their functionalities such that they not only protect critical components from hot gases but also can sense their own material temperature or other physical properties. The self-sensing capability is introduced by embedding optically active rare earth ions into the thermal barrier ceramic. When illuminated by light, the material starts to phosphoresce and the phosphorescence can provide in situ information on temperature, phase changes, corrosion, or erosion of the coating subject to the coating design. The integration of an on-line temperature detection system enables the full potential of TBCs to be realized due to improved accuracy in temperature measurement and early warning of degradation. This in turn will increase fuel efficiency and will reduce CO_2 emissions. This paper reviews the previous implementation of such a measurement system into a Rolls-Royce jet engine using dysprosium doped yttrium-stabilized-zirconia (YSZ) as a single layer and a dual layer sensor coating material. The temperature measurements were carried out on cooled and uncooled components on a combustion chamber liner and on nozzle guide vanes (NGVs), respectively. The paper investigates the interpretation of those results looking at coating thickness effects and temperature gradients across the TBC. For the study, a specialized cyclic thermal gradient burner test rig was operated and instrumented using equivalent instrumentation to that used for the engine test. This unique rig enables the controlled heating of the coatings at different temperature regimes. A long-wavelength pyrometer was employed detecting the surface temperature of the coating in combination with the phosphorescence detector. A correction was applied to compensate for changes in emis-sivity using two methods. A thermocouple was used continuously measuring the substrate temperature of the sample. Typical gradients across the coating are less than 1 K/μm. As the excitation laser penetrates the coating, it generates phosphorescence from several locations throughout the coating and hence provides an integrated signal. The study successfully proved that the temperature indication from the phosphorescence coating remains between the surface and substrate temperature for all operating conditions. This demonstrates the possibility to measure inside the coating closer to the bond coat. The knowledge of the bond coat temperature is relevant to the growth of the thermally grown oxide (TGO) which is linked to the delamination of the coating and hence determines its life. Further, the data are related to a one-dimensional phosphorescence model determining the penetration depth of the laser and the emission.
机译:现有的热障涂层(TBC)可以进行改进以增强其功能,这样它们不仅可以保护关键组件免受热气体的侵害,而且可以感应其自身的材料温度或其他物理特性。通过将光学活性稀土离子嵌入到热障陶瓷中来引入自感应功能。当被光照射时,该材料开始发磷光,并且磷光可提供有关受涂层设计影响的涂层温度,相变,腐蚀或腐蚀的原位信息。在线温度检测系统的集成使温度测量的准确性提高了,并提供了降级预警,从而使TBC的全部潜力得以实现。反过来,这将提高燃油效率并减少CO_2排放。本文回顾了使用a掺杂钇稳定氧化锆(YSZ)作为单层和双层传感器涂层材料的劳斯莱斯喷气发动机中这种测量系统的先前实现方式。温度测量分别在燃烧室衬套和喷嘴导向叶片(NGV)上的冷却和未冷却组件上进行。本文研究了这些结果的解释,着眼于整个TBC的涂层厚度效应和温度梯度。为了进行研究,使用了专门的循环热梯度燃烧器测试台,并使用了与发动机测试所用的相同的仪器进行了测试。这种独特的设备能够在不同的温度范围内控制涂层的加热。结合磷光检测器使用长波高温计检测涂层的表面温度。使用两种方法进行校正以补偿发射率的变化。使用热电偶连续测量样品的基板温度。整个涂层的典型梯度小于1 K /μm。当激发激光穿透涂层时,它会在整个涂层的多个位置产生磷光,从而提供积分信号。这项研究成功地证明了在所有工作条件下,磷光涂层的温度指示均保持在表面温度与基材温度之间。这表明有可能在更接近粘结涂层的位置测量涂层内部。粘合剂涂层温度的知识与热生长氧化物(TGO)的生长有关,后者与涂层的分层有关,因此决定了涂层的寿命。此外,数据与确定激光的穿透深度和发射的一维磷光模型有关。

著录项

  • 来源
    《Journal of turbomachinery》 |2015年第10期|101004.1-101004.9|共9页
  • 作者单位

    Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK;

    Sensor Coating Systems Ltd., Imperial Incubator, Bessemer Building, Level 1&2, Imperial College London, London SW7 2AZ, UK;

    Sensor Coating Systems Ltd., Imperial Incubator, Bessemer Building, Level 1&2, Imperial College London, London SW7 2AZ, UK;

    Sensor Coating Systems Ltd., Imperial Incubator, Bessemer Building, Level 1&2, Imperial College London, London SW7 2AZ, UK;

    Lehrstuhl fuer Technische Thermodynamik, Otto-von-Guericke-Universitaet, Magdeburg 39106, Germany;

    School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号