...
首页> 外文期刊>Journal of Volcanology and Geothermal Research >Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery
【24h】

Monitoring, forecasting collapse events, and mapping pyroclastic deposits at Sinabung volcano with satellite imagery

机译:监视,预测倒塌事件,并利用卫星图像绘制西那邦火山的火山碎屑沉积物

获取原文
获取原文并翻译 | 示例
           

摘要

During the ongoing (2013-present) eruption of Sinabung volcano, north Sumatra, we have routinely used a variety of satellite remote sensing data to observe and forecast lava dome and lava flow collapse events, to map the resulting pyroclastic deposits, and to estimate effusion rates. In this paper, we focus on the first two years of the current eruption (September 2013-December 2015), and we summarize major events in 2016. We divide the eruption into 5 major phases: 1) phreatomagmatic (July 2013-18 December 2013), 2) first dome growth and collapse (18 December 2013-10 January 2014), 3) lava-flow (10 January 2014-midSeptember 2014), 4) second lava dome and collapse (mid-September 2014-July 2015), 5) lava dome collapse and ash explosion phase (August 2015-present). Throughout the eruption, remotely sensed information has been instrumental in assessing the stability of the lava dome and flow and to forecast collapse events that produce pyroclastic density currents (PDCs: block-and-ash flows, co-ignimbrite surges, and blasts). Forecasts based on remote sensing data in combination with seismic, geodetic and gas-monitoring data have also helped inform decisions related to alert levels and evacuations. Relatively unusual aspects of the Sinabung eruption include the transition from dome to flow morphology (phase 2 to phase 3 transition) and the frequent occurrence during phase 3 of collapses from the lava flow-front and flow-margins-collapses that produced extensive pyroclastic density currents. By analogy to the well-known "Merapi type" collapses and pyroclastic deposits, we propose that lava flow-front and flow-margin collapses with associated PDCs be known as "Sinabung type." Although detailed study of deposits has not been possible due to continuing hazards, our observations suggest that the transition from lava dome to lava flow and the occurrence of flow-front and flow-margin collapses reflect a particular combination of lava viscosity and steepness of slope. Our observations also show clear evidence of at least one slope-parallel high-velocity and dilute PDC (a "blast") that emanated from a lava-margin collapse site 500 m downslope from the vent. This 1 February 2014 blast downed and singed a forest out to at least 3.9 km from the collapse site and killed 16 people. We also use a combination of field and remotely sensed data to map the distribution of Sinabung deposits. We estimate eruptive volumes and extrusion rates by combining sequential measurements of lava surface and pyroclastic flow areas with thickness estimates derived from simple geometric assumptions, oblique photographs and Digital Elevation Models (DEMs) derived from remotely sensed data. Our estimates of short-term effusion rates vary widely on a daily to weekly basis, from <1 to >20 m(3) s(-1). In a few cases, periods of increased extrusion precede lava flow-front collapses by a few days to a week, suggesting delays in transmittance of effusion pulses as lava moves from vent to flow front. We find that, as of 1 January 2016, the total area of deposits is 10(7) m(2), and their approximate deposit volume is about 0.3 km(3), equivalent to 0.2 km(3) Dense Rock Equivalent (DRE). We anticipate that our deposit maps will be valuable in the future as a framework for the study of the magmatic and textural evolution of eruptive products through time. Published by Elsevier B.V.
机译:在苏门答腊以北的锡纳蓬火山持续喷发期间(2013年至今),我们常规使用各种卫星遥感数据来观测和预测熔岩穹顶和熔岩流塌陷事件,以绘制出火山碎屑沉积图,并估算积水。费率。在本文中,我们重点介绍当前喷发的前两年(2013年9月至2015年12月),并总结了2016年的重大事件。我们将喷发分为5个主要阶段:1)吞噬岩浆(2013年7月至2013年12月18日) ),2)第一个穹顶生长和塌陷(2013年12月18日至2014年1月10日),3)熔岩流(2014年1月10日至2014年9月中旬),4)第二个熔岩穹顶和塌陷(2014年9月中旬至2015年7月), 5)熔岩穹顶坍塌和灰烬爆炸阶段(2015年8月至今)。在整个喷发过程中,遥感信息有助于评估熔岩穹顶和流动的稳定性,并预测产生火山碎屑密度流的崩塌事件(PDC:块状和灰烬流动,共燃浪涌和爆炸)。基于遥感数据并结合地震,大地测量和瓦斯监测数据进行的预测也有助于为有关警报级别和撤离的决策提供依据。锡那邦喷发的相对不寻常的方面包括从穹顶到流动形态的转变(第2阶段到第3阶段的转变)以及第3阶段从熔岩流前塌陷和流缘塌陷中频繁发生,产生大量的火山碎屑密度流。通过类似于众所周知的“ Merapi型”塌陷和火山碎屑沉积物,我们建议将熔岩流前和流缘塌陷与相关的PDC一起称为“ Sinabung型”。尽管由于持续的危害而无法对沉积物进行详细的研究,但我们的观察表明,从熔岩穹顶到熔岩流的过渡以及流动前沿和流动边界塌陷的发生反映了熔岩粘度和斜坡陡度的特定组合。我们的观察结果还清楚地表明,至少有一个坡度平行的高速且稀疏的PDC(“爆炸”)是从喷口向下500 m的熔岩边缘塌陷点发出的。 2014年2月1日的爆炸击落并烧毁了一片森林,使其距离倒塌地点至少3.9公里,并杀死了16人。我们还结合使用了现场数据和遥感数据来绘制西那丰矿床的分布图。我们通过结合对熔岩表面和火山碎屑流区的连续测量与从简单的几何假设,倾斜的照片和从遥感数据得出的数字高程模型(DEM)得出的厚度估计值的结合来估算喷发量和挤压速率。我们对短期积水率的估计每天(每天)到每周(从<1到> 20 m(3)s(-1))差异很大。在少数情况下,在熔岩流前塌陷发生几天到一周之前,挤压的增加期就增加了,这表明随着熔岩从排气口流向流动前沿,渗出脉冲的透射率会延迟。我们发现,截至2016年1月1日,矿床总面积为10(7)m(2),其近似矿床量约为0.3 km(3),相当于0.2 km(3)密集岩石当量(DRE) )。我们预计,作为研究随着时间的推移喷发产品的岩浆和质地演化的框架,我们的矿藏图将在未来具有重要价值。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号