首页> 外文期刊>Marine Geodesy >Ambiguity Recovery Using the Triple-Differenced Carrier Phase Type Approach for Long-Range GPS Kinematic Positioning
【24h】

Ambiguity Recovery Using the Triple-Differenced Carrier Phase Type Approach for Long-Range GPS Kinematic Positioning

机译:使用三差载波相位类型方法进行远距离GPS运动定位的歧义恢复

获取原文
获取原文并翻译 | 示例
           

摘要

Precise, long-range GPS kinematic positioning to centimeter accuracy requires that carrier phase ambiguities be resolved correctly during an initialization period, and subsequently to recover the "lost" ambiguities in the event of a cycle slip. Furthermore, to maximize navigational efficiency, ambiguity resolution and carrier phase-based positioning need to be carried out in real-time. Due to the presence of the ionospheric signal delay, satellite orbit errors, and the tropospheric delay, so-called absolute ambiguity resolution "on-the-fly" for long-range applications becomes very difficult, and largely impossible. However, all of these errors exhibit a high degree of spatial and temporal correlation. In the case of short-range ambiguity resolution, because of the high spatial correlation, their effect can be neglected, but their influence will dramatically increase as the baseline length increases. On the other hand, between discrete trajectory epochs, they will still exhibit a large degree of similarity for short time spans. In this article, a method is described in which similar triple-differenced observables formed between one epoch with unknown ambiguities and another epoch with fixed ambiguities can be used to derive relative ambiguity values, which are ordinarily equal to zero (or to the number of cycles that have slipped when loss-of-lock occurred). Because of the temporal correlation characteristics of the error sources, the cycle slips can be recovered using the proposed methodology. In order to test the performance of this algorithm an experiment involving the precise positioning of an aircraft, over distances ranging from a few hundred meters up to 700 kilometres, was carried out. The results indicate that the proposed technique can successfully resolve relative ambiguities (or cycle slips) over long distances in an efficient manner that can be implemented in real-time.
机译:精确,远距离的GPS运动定位至厘米的精度要求在初始化期间正确解决载波相位的歧义,并在出现周跳时恢复“丢失”的歧义。此外,为了最大程度地提高导航效率,需要实时执行歧义分辨率和基于载波相位的定位。由于电离层信号延迟,卫星轨道误差和对流层延迟的存在,用于远程应用的所谓“即时”绝对歧义分辨率变得非常困难,并且在很大程度上是不可能的。但是,所有这些错误都表现出高度的空间和时间相关性。在短距离歧义分辨率的情况下,由于高度的空间相关性,可以忽略它们的影响,但是随着基线长度的增加,它们的影响将显着增加。另一方面,在离散轨迹历元之间,它们在短时间跨度内仍将表现出高度的相似性。在本文中,描述了一种方法,其中在一个具有未知歧义的历元和另一个具有固定歧义的历元之间形成的相似的三差分可观测量可用于导出相对歧义值,该值通常等于零(或等于循环数)发生失锁时滑落的滑行)。由于误差源的时间相关特性,可以使用提出的方法来恢复周跳。为了测试该算法的性能,进行了涉及飞机精确定位的实验,该飞机的定位范围从几百米到700公里。结果表明,所提出的技术可以有效地解决长距离上的相对歧义(或周跳),并且可以实时实施。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号