...
首页> 外文期刊>Materials Chemistry and Physics >Epitaxial growth and interface strain coupling effects in manganite film/piezoelectric-crystal multiferroic heterostructures
【24h】

Epitaxial growth and interface strain coupling effects in manganite film/piezoelectric-crystal multiferroic heterostructures

机译:锰薄膜/压电晶体多铁异质结构中的外延生长和界面应变耦合效应

获取原文
获取原文并翻译 | 示例
           

摘要

We constructed multiferroic structures by epitaxially growing colossal magnetoresistive La_(0.7)Sr_(0.3)MnO_3 (LSMO) thin films on piezoelectric single-crystal substrates of composition 0.67Pb(Mg_(1/3)Nb_(2/3))O_3-0.33PbTiO_3 (PMN-PT). Due to the efficient elastic coupling at the interface, the electric-field-induced piezoelectric strain (ε_(piezo)) in the PMN-PT substrate is effectively transferred to the LSMO film, giving rise to a remarkable modulation of the lattice strain, resistivity, and Curie temperature T_C of the LSMO film. Particularly, it was found that the magnetic field has an opposite effect on the strain-tunability of resistivity above and below T_C. Moreover, we found that the resistivity of the film is most sensitive to ε_(piezo) near T_C and becomes less sensitive to ε_(piezo) when the temperature is lower or higher than T_C. These, together with the well fitted resistivity data into a phenomenological model based on coexisting phases, demonstrate that the phase separation is crucial to understand the strain-mediated multiferroic properties in manganite fiim/PMN-PT structures.
机译:我们通过在组成0.67Pb(Mg_(1/3)Nb_(2/3))O_3-0.33的压电单晶衬底上外延生长大磁阻La_(0.7)Sr_(0.3)MnO_3(LSMO)薄膜来构建多铁性结构。 PbTiO_3(PMN-PT)。由于界面处的有效弹性耦合,PMN-PT基板中的电场感应压电应变(ε_(pie​​zo))有效地传递到LSMO膜,从而引起晶格应变,电阻率的显着调制,以及LSMO膜的居里温度T_C。特别地,发现磁场对高于和低于T_C的电阻率的应变可调性具有相反的影响。此外,我们发现薄膜的电阻率对T_C附近的ε_(pie​​zo)最敏感,而当温度低于或高于T_C时,对ε_(pie​​zo)的敏感度降低。这些,再加上将电阻率数据很好地拟合到基于共存相的现象学模型中,表明相分离对于理解锰矿fiim / PMN-PT结构中的应变介导的多铁性性质至关重要。

著录项

  • 来源
    《Materials Chemistry and Physics》 |2012年第1期|42-46|共5页
  • 作者单位

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China,Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong, China;

    Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong, China;

    Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;

    Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong, China;

    Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong, China;

    Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong, China;

    Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hong Kong, China;

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;

    State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;

    Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    A. Thin film; B. Epitaxial growth; C. Electronic characterisation; D. Transport properties;

    机译:A.薄膜;B.外延生长;C.电子表征;D.运输性质;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号