...
首页> 外文期刊>Materials Science and Engineering >Plastic deformation dominates chemical reactions in Ti/Si multilayered nanofilms
【24h】

Plastic deformation dominates chemical reactions in Ti/Si multilayered nanofilms

机译:塑性变形主导Ti / Si多层纳米膜中的化学反应

获取原文
获取原文并翻译 | 示例
           

摘要

The purpose of the study was to clarify the exothermic chemical reaction mechanisms in Ti/Si multilayered nanofilms under mechanical loading. We conducted in situ compression experiments of truncated-cone specimens of polycrystalline-Ti/amorphous-Si multilayered nanofilms (bilayer thickness of ~ 34 nm) deposited by electron beam evaporation within a scanning electron microscope. The true stress increased almost linearly with increasing true strain and the tangent modulus began to decrease at ~ 3 GPa. Transmission electron microscopy of the deformed specimens confirmed that each layer was plastically compressed in the stacking direction and expanded in the in-plane direction, resulting in an increase in the Ti/Si interface area. Selected-area electron diffraction analysis revealed that a new crystal structure, proposed to be Ti5Si4and/or TiSi, was generated on the Ti/Si interface and within the Ti layer. In addition, the volume of the specimens decreased with increasing strain, supporting the hypothesis of a chemical reaction occurring. The chemical reaction was induced at the new reactive Ti/Si interface by the partial fracture of preexisting compound layers due to tensile stresses in the in-plane direction, and/or induced by diffusion-induced mixing through the thinned compound layers. These findings present the possibility of controlling the chemical reaction by local mechanical loading. The observed exothermic reaction can be used for various applications, such as local heating in large-scale micro- and nanodevices.
机译:该研究的目的是阐明机械负载下Ti / Si多层纳米薄膜中的放热化学反应机理。我们在扫描电子显微镜内通过电子束蒸发沉积的多晶钛/非晶硅多层纳米膜(双层厚度约34 nm)的截锥标本进行了原位压缩实验。真实应力随着真实应变的增加而几乎呈线性增加,并且切线模量在〜3 GPa时开始下降。变形样品的透射电子显微镜证实,每一层在堆叠方向上被塑性压缩并在面内方向上膨胀,导致Ti / Si界面面积增加。选定区域的电子衍射分析表明,在Ti / Si界面上和Ti层内产生了一种新的晶体结构,建议是Ti5Si4和/或TiSi。另外,样品的体积随着应变的增加而减小,支持了发生化学反应的假设。由于在平面方向上的拉伸应力,由于预先存在的化合物层的局部断裂,化学反应在新的反应性Ti / Si界面处引起,和/或通过在较薄的化合物层中的扩散诱导混合引起。这些发现提出了通过局部机械负荷控制化学反应的可能性。观察到的放热反应可用于各种应用,例如大规模微型和纳米设备中的局部加热。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号