首页> 外文期刊>Materials Science and Engineering >Microscopic investigation of damage mechanisms and anisotropic evolution of damage in DP600
【24h】

Microscopic investigation of damage mechanisms and anisotropic evolution of damage in DP600

机译:DP600损伤机理的微观研究及损伤的各向异性演化

获取原文
获取原文并翻译 | 示例
           

摘要

Weight reduction and fuel consumption play an important role on material selection in automotive industry. In this respect, ferritic-martensitic dual phase steels are gaining popularity thanks to their versatile combination of strength and formability. In this study, we investigate evolution of damage and active damage mechanisms in a commercial DP600 steel. Interrupted tensile tests are conducted in both rolling (RD) and transverse directions (TD). Subsequently, damage mechanisms and void evolution is characterized by cross-sectional SEM micrographs. The results reveal that, in both RD and TD, damage occurs by three different damage mechanisms. Namely, void formation due to inclusions, cracking of martensite islands and decohesion between ferrite and martensite. From these damage mechanisms, void formation due to large inclusions occur in the early stages of deformation, whereas the other two are both active throughout the complete stretching. The most commonly observed damage mechanism was martensite cracks and seem to be the primary reason of failure. In addition, void evolution studies clearly show that damaged area as well as number of voids increase more rapidly in RD than TD. Furthermore, in both directions, damage concentrates at the mid plane of the specimens, leading to an inhomogeneous distribution of voids in the thickness direction.
机译:减轻重量和减少油耗在汽车行业的材料选择中起着重要作用。在这方面,铁素体-马氏体双相钢由于其强度和可成形性的多方面组合而受到欢迎。在这项研究中,我们调查了商用DP600钢的损伤演变和主动损伤机理。在滚动方向(RD)和横向方向(TD)上进行了中断的拉伸试验。随后,通过横截面SEM显微照片表征破坏机理和空隙发展。结果表明,在RD和TD中,损坏都是通过三种不同的损坏机制发生的。即,由于夹杂物引起的空隙形成,马氏体岛的开裂以及铁素体与马氏体之间的脱粘。从这些破坏机理来看,在变形的早期阶段会由于大的夹杂物而形成空隙,而另外两个在整个拉伸过程中都活跃。最常见的破坏机制是马氏体裂纹,似乎是破坏的主要原因。此外,空隙演化研究清楚地表明,与TD相比,RD中受损区域和空隙数量的增长更快。此外,在两个方向上,损伤集中在试样的中平面,导致在厚度方向上空隙的不均匀分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号