...
首页> 外文期刊>Materials Science and Engineering >In-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in bearing steels
【24h】

In-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in bearing steels

机译:原位中子衍射和晶体塑性有限元建模,研究轴承钢中残余奥氏体的运动学稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. In order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. The modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. The results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.
机译:这项工作结合了原位中子衍射和晶体塑性有限元建模,以研究高碳轴承钢中残余奥氏体的运动学稳定性。轴承钢中运动学稳定的残余奥氏体的存在会显着影响宏观力学和微观力学的材料响应。亚稳态奥氏体的机械表征是准确捕获典型应用载荷下的微机械行为的关键组成部分。传统的机械表征技术无法离散地量化奥氏体的微机械响应,因此,计算预测严重依赖于对奥氏体相的反复试验或定性描述。为了克服这个问题,在本工作中,我们使用A485等级1轴承钢试样的单轴拉伸试验的原位中子衍射。通过中子衍射分析确定的机械响应被纳入到混合晶体塑性有限元模型中,该模型考虑了马氏体的晶体可塑性以及轴承钢中从奥氏体到马氏体的应力辅助转变。建模响应用于估计奥氏体和马氏体相的单晶弹性常数。结果表明,使用原位中子衍射结合晶体可塑性模型,可以成功预测轴承钢的微观力学和宏观力学响应,同时考虑残余奥氏体的马氏体相变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号