首页> 外文期刊>Materials Science and Engineering >Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties
【24h】

Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties

机译:等原子AlCoCrFeNi高熵合金的粉末冶金加工:组织和力学性能

获取原文
获取原文并翻译 | 示例
           

摘要

Phase formation, microstructural evolution and the mechanical properties of novel multi-component equiatomic AlCoCrFeNi high entropy alloy synthesized by high energy ball milling followed by spark plasma sintering have been reported here. The microstructure of the mechanically alloyed (MA) powder and sintered samples were studied using X-ray dim-action, scanning electron and transmission electron microscopy, whereas the detailed investigation of the mechanical properties of the sintered samples were measured using micro and nano hardness techniques. The fracture toughness measurements were performed by applying single edge V notch beam (SEVNB) technique. The MA powder shows the presence of FCC (τ) and BCC (κ) solid solution phases. Extended ball milling (up to 60 h) does not change the phases present in MA powder. The sintered pellets show phase-separated microstructure consisting of Al-Ni rich Ll_2 phase, α' and tetragonal Cr-Fe-Co based σ phase along with Al-Ni-Co-Fe FCC solid solution phase (ε) for sample sintered from 973 to 1273 K. The experimental evidences indicate that BCC (κ) solid solution undergoes eutectoid transformation during sintering leading to the formation of Ll_2 ordered α' and σ phases, whereas FCC (τ) phase remains unaltered with a slight change in the lattice parameter. The hardness of the sample increases with sintering temperature and a sudden rise in hardness is observed 1173 K. The sample sintered at 1273 K shows the highest hardness of ~8 GPa. The elastic modulus mapping clearly indicates the presence of three phases having elastic moduli of about 300, 220 and 160 GPa. The fracture toughness obtained using SEVNB test shows a maximum value of 3.9 MPa m~(1/2), which is attributed to the presence of brittle nanosized a phase precipitates. It is proposed that significant increase in the fraction of σ phase precipitates and eutectoid transformation of the τ phase contribute to increase in hardness along with better densification at higher sintering temperatures.
机译:已经报道了通过高能球磨并随后进行火花等离子体烧结合成的新型多组分等原子AlCoCrFeNi高熵合金的相形成,微观结构演变和力学性能。使用X射线变暗作用,扫描电子和透射电子显微镜研究了机械合金化(MA)粉末和烧结样品的微观结构,而使用微米和纳米硬度技术测量了烧结样品的机械性能的详细研究。 。断裂韧性的测量是通过应用单边V型缺口梁(SEVNB)技术进行的。 MA粉末显示出FCC(τ)和BCC(κ)固溶相的存在。延长球磨(长达60小时)不会改变MA粉中的相。对于从973烧结的样品,烧结后的球团具有由Al-Ni富集的Ll_2相,α'和四方Cr-Fe-Co基σ相以及Al-Ni-Co-Fe FCC固溶体相(ε)组成的相分离的微观结构实验证据表明,BCC(κ)固溶体在烧结过程中经历了共析转变,导致形成Ll_2有序的α'和σ相,而FCC(τ)相保持不变,且晶格参数略有变化。样品的硬度随烧结温度的升高而增加,并且观察到硬度突然升高1173K。以1273 K烧结的样品显示出最高的〜8 GPa硬度。弹性模量图清楚地表明存在具有约300、220和160GPa的弹性模量的三相。使用SEVNB测试获得的断裂韧性显示出3.9 MPa m〜(1/2)的最大值,这归因于存在脆性纳米级a相沉淀。有人认为,在较高的烧结温度下,σ相析出物分数的显着增加和τ相的共析转变有助于硬度的增加以及更好的致密化。

著录项

  • 来源
    《Materials Science and Engineering》 |2017年第2期|299-313|共15页
  • 作者单位

    Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;

    Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;

    Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;

    Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India;

    Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;

    Hysitron Inc., Eden Prairie, MN 55344, USA;

    Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High entropy alloys; Mechanical alloying; Spark plasma sintering; Phase separation; Mechanical properties;

    机译:高熵合金;机械合金化;火花等离子体烧结;相分离;机械性能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号