首页> 外文期刊>Materials Science and Engineering >Effects of coiling temperature and pipe-forming strain on yield strength variation after ERW pipe forming of API X70 and X80 linepipe steels
【24h】

Effects of coiling temperature and pipe-forming strain on yield strength variation after ERW pipe forming of API X70 and X80 linepipe steels

机译:卷材温度和成管应变对API X70和X80管线钢的ERW成管后屈服强度变化的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Since pipes are undergone repeated tension and compression strains during pipe-forming, and flattening, flattened sheets often show too higher or lower yield strength than hot-rolled coils, which poses to difficulties in satisfying yield strength standards. In this study, effects of microstructure and pipe-forming strain (thickness/ diameter (t/D)) on yield strength variation were investigated in X70 (483 MPa) and X80 (552 MPa) linepipe steels fabricated by controlling Mo content and coiling temperature, and their yield strength, strain hardening exponent, and Bauschinger stress parameter were measured by tension-compression tests with varying tensile-pre-strain. In the X80 steels whose Mo content was higher than that of the X70 steels, the higher Mo content promoted the formation of low-temperature transformed microstructures such as acicular ferrite (AF), granular bainite (6B), bainitic ferrite (BF), and martensite-austenite (MA) constituent, which played a role in decreasing Bauschinger effect. The reduction in yield strength was smaller in the X80 steel than in the X70 steel. As the coiling temperature decreased, the volume fractions of AF, BF, and pearlite increased, while those of QPF, GB, and MA decreased, and led to the increase in yield strength by about 30 MPa. The yield strength slightly increased after the pipe forming at higher coiling temperature, while it was largely reduced at lower coiling temperature. When the steels having different t/D were compared, the yield strength after the pipe forming increased largely by 65 MPa under the higher t/D as the strain hardening effect overrode the Bauschinger effect. In order to prevent or minimize the large reduction in yield strength after the pipe forming, low-temperature transformation microstructures, coarse grain size, and high t/D were desirable.
机译:由于在管材成形和压扁期间,管子承受反复的拉伸和压缩应变,因此压扁的板材通常比热轧卷材显示出过高或过低的屈服强度,这难以满足屈服强度标准。在这项研究中,研究了通过控制Mo含量和卷取温度制造的X70(483 MPa)和X80(552 MPa)管线钢的显微组织和成管应变(厚度/直径(t / D))对屈服强度变化的影响。 ,通过改变拉伸预应变的拉伸压缩试验,测量了它们的屈服强度,应变硬化指数和包辛格应力参数。在Mo含量高于X70的X80钢中,较高的Mo含量促进了诸如针状铁素体(AF),粒状贝氏体(6B),贝氏体铁素体(BF)和铁素体的低温转变组织的形成。马氏体-奥氏体(MA)成分,在降低鲍辛格效应中起作用。 X80钢的屈服强度降低幅度小于X70钢。随着卷取温度的降低,AF,BF和珠光体的体积分数增加,而QPF,GB和MA的体积分数降低,导致屈服强度提高约30 MPa。在较高卷取温度下进行管材成形后,屈服强度略有提高,而在较低卷取温度下则大幅降低。当比较具有不同t / D的钢时,由于较高的t / D,应变硬化效应超过了包辛格效应,因此在较高的t / D时,管材成形后的屈服强度大大提高了65 MPa。为了防止或最小化管材成型后的屈服强度的大幅降低,期望低温相变组织,粗大粒径和高t / D。

著录项

  • 来源
    《Materials Science and Engineering》 |2017年第13期|304-311|共8页
  • 作者单位

    Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784, South Korea;

    Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784, South Korea;

    Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784, South Korea;

    Structural Research Group, Steel Solution Marketing Department, POSCO, Incheon 406-840, South Korea;

    POSCO Computational Optimization of API steels Project Team, Technical Research Laboratories, POSCO, Kwangyang 545-875, South Korea;

    POSCO Computational Optimization of API steels Project Team, Technical Research Laboratories, POSCO, Kwangyang 545-875, South Korea;

    Center for Advanced Aerospace Materials, Pohang University of Science and Technology, Pohang 790-784, South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    linepipe steel; Tension-compression test; Bauschinger effect; Strain hardening; Electrical resistance welding (ERW) pipe; forming;

    机译:管线钢;拉伸压缩试验;包辛格效应;应变硬化;电阻焊(ERW)管;成型;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号