...
首页> 外文期刊>Materials Science and Engineering >Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys - Towards rapid alloy screening and design
【24h】

Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys - Towards rapid alloy screening and design

机译:将热力学建模和元素粉末混合物的3D打印相结合,用于高熵合金的高通量研究-快速合金筛选和设计

获取原文
获取原文并翻译 | 示例
           

摘要

High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co-Cr-Fe-Mn-Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.
机译:近年来,高熵合金由于其优异的性能和各种各样的合金体系而引起了学术界和工业界的高度关注。然而,到目前为止,相组成和稳定性的预测是基于经验法则的,该经验法则只能应用于选定的合金体系。在当前的研究中,我们介绍了一种能够进行高通量理论和实验合金筛选和设计的方法。作为全面热力学计算的基础,为Co-Cr-Fe-Mn-Ni系统编译了一个新数据库,并用于Calphad和Scheil模拟。对于批量样品生产,元素粉末共混物的激光金属沉积(LMD)用于构建等原子的CoCrFeMnNi Cantor合金,作为第一个演示器。这种生产方法在改变化学成分方面具有高度的灵活性,因此使其自身适合于高通量合金的生产。使用光学显微镜,EBSD,EDX,XRD,硬度和压缩测试对所加工材料的微观结构,织构和机械性能进行了表征。与传统铸造材料相比,LMD生产的合金显示出完全的密度,大大降低的偏析,明显的织构以及出色的机械性能。通过模拟可以正确预测相组成和元素分布。讨论了所介绍的方法在高熵合金中的适用性以及在成分上复杂的合金中的扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号