...
首页> 外文期刊>Materials Science and Engineering >Layer architecture and fatigue life of ultraflne-grained laminated metal composites consisting of different aluminum alloys
【24h】

Layer architecture and fatigue life of ultraflne-grained laminated metal composites consisting of different aluminum alloys

机译:由不同铝合金组成的超细颗粒层压金属复合材料的层结构和疲劳寿命

获取原文
获取原文并翻译 | 示例
           

摘要

The influence of the layer architecture on the fatigue properties of ultrafine-grained laminated metal composites is studied. Composites with different stacking sequences of the aluminum alloys AA1050, AA5005, and AA2024 were produced by accumulative roll bonding and characterized by microstructural analysis and nanoindentation experiments. The fatigue properties were determined by 3-point bending tests performed on a vibraphore testing machine. Subsequently, the crack path was analyzed using a scanning electron microscope. It was observed that the fatigue crack bifurcates close to the interface if the hardness difference between both materials is high. The crack then spreads parallel to the interface within the softer material. This crack branching is more pronounced at high stress amplitudes caused by a significant accumulation of plastic deformation in front of the interface. Consequently, at high stress amplitudes the fatigue lives are significantly higher for composites with a high hardness difference between the layers. At low stress amplitudes, at which crack initiation is the dominating fatigue mechanism, the material of the outer layer mainly determines the fatigue lives. Composites with the same outer layer, but different interlayers, show very similar high cycle fatigue lives. Thus, by an appropriate layer architecture ultrafine-grained laminated metal composites with significantly enhanced fatigue properties can be designed.%Accumulative Roll Bonding (ARB); Ultrafine-grained (UFG) laminated metal; composites (LMCs); Fatigue life; Fatigue crack path
机译:研究了层结构对超细颗粒层压金属复合材料疲劳性能的影响。通过累积辊压粘结制备了铝合金AA1050,AA5005和AA2024的具有不同堆积顺序的复合材料,并通过微观结构分析和纳米压痕实验对其进行了表征。疲劳性能是通过在颤音测试仪上进行的三点弯曲测试确定的。随后,使用扫描电子显微镜分析裂纹路径。观察到,如果两种材料之间的硬度差高,则疲劳裂纹在界面附近分叉。然后,裂纹平行于较软材料内的界面扩展。这种裂纹分支在高应力振幅下更为明显,这是由于界面前部塑性变形的大量积累引起的。因此,在高应力振幅下,层间硬度差高的复合材料的疲劳寿命明显更高。在低应力振幅下,裂纹萌生是主要的疲劳机制,外层材料主要决定疲劳寿命。具有相同外层但具有不同中间层的复合材料显示出非常相似的高周疲劳寿命。因此,通过适当的层结构,可以设计具有明显增强的疲劳性能的超细颗粒层压金属复合材料。超细颗粒(UFG)层压金属;复合材料(LMC);疲劳生活;疲劳裂纹路径

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号