首页> 外文期刊>Materials Science and Engineering >Improved fatigue properties with maintaining low Young's modulus achieved in biomedical beta-type titanium alloy by oxygen addition
【24h】

Improved fatigue properties with maintaining low Young's modulus achieved in biomedical beta-type titanium alloy by oxygen addition

机译:通过添加氧气,在生物医学β型钛合金中保持较低的杨氏模量,从而改善疲劳性能

获取原文
获取原文并翻译 | 示例
           

摘要

Oxygen was added into biomedical β-type Ti-29Nb-13Ta-4.6Zr (mass%, TNTZ) alloy to improve its fatigue properties with maintaining its low Young's modulus. The effect of oxygen on the fatigue behaviors of these oxygen-added TNTZ alloys was systematically investigated. A series of TNTZ-(0.1, 0.3, 0.5 and 0.7 mass%)0 alloys were prepared, denoted as 0.1O, 0.3O, 0.5O, and 0.7O, respectively. The Young's moduli of the prepared alloys increase slightly with increasing oxygen content; 0.7O possessing the highest oxygen content still shows a quite low Young's modulus. The fatigue limits of the alloys increase monotonically with oxygen content increases. The high-concentration oxygen in 0.7O suppresses the slip plane decohesion and induces the formation of densely-arranged small-scaled a" martensite twins that increases the paths and distance for fatigue crack propagation, thus it enhances the resistance to the fatigue crack initiation and propagation in 0.7O, which contributes to its excellent fatigue performance. Among all the alloys compared in the present study, 0.70 shows a high fatigue limit of - 635 MPa, a high tensile strength of - 1100 MPa, a large elongation of - 20% as well as a low Young's modulus of ~ 76 GPa, thus it is regarded as a promising biomaterial for next-generation biomedical applications.
机译:将氧气添加到生物医学β型Ti-29Nb-13Ta-4.6Zr(质量%,TNTZ)合金中以改善其疲劳性能并保持其低杨氏模量。系统地研究了氧对这些添加氧的TNTZ合金的疲劳行为的影响。制备了一系列TNTZ-(0.1、0.3、0.5和0.7质量%)0合金,分别表示为0.1O,0.3O,0.5O和0.7O。所制备合金的杨氏模量随氧含量的增加而略有增加;氧含量最高的0.7O仍显示出相当低的杨氏模量。合金的疲劳极限随氧含量的增加而单调增加。 0.7O中的高浓度氧抑制滑移面的内聚并诱导形成密集排列的小尺寸a“马氏体孪晶,从而增加了疲劳裂纹扩展的路径和距离,从而增强了抗疲劳裂纹萌生和抵抗的能力。在0.7O时发生扩展,这有助于其出色的疲劳性能。在本研究中比较的所有合金中,0.70的疲劳极限为-635 MPa,抗拉强度为-1100 MPa,伸长率为-20%以及约76 GPa的低杨氏模量,因此被认为是下一代生物医学应用的有前途的生物材料。

著录项

  • 来源
    《Materials Science and Engineering》 |2017年第17期|10-17|共8页
  • 作者单位

    Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047, Japan;

    Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan,Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan,Graduate School of Science and Technology, Meijyo University, Nagoya, Akhi 468-8502, Japan,Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Akhi 464-8603, Japan;

    Department of Mechanical Engineering, Faculty of Science and Engineering, Kindai University, Higashiosaka, Osaka 577-8502, Japan;

    Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577, Japan;

    Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka 567-0047, Japan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biomaterials; Titanium alloys; Characterization; Fatigue;

    机译:生物材料;钛合金;表征;疲劳;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号