...
首页> 外文期刊>Materials Science and Engineering >Development of a precipitate size-dependent crystal plasticity constitutive model for two-phase materials and its implementation on a multi-scale computational framework
【24h】

Development of a precipitate size-dependent crystal plasticity constitutive model for two-phase materials and its implementation on a multi-scale computational framework

机译:两相材料的析出物尺寸相关晶体可塑性本构模型的建立及其在多尺度计算框架中的实现

获取原文
获取原文并翻译 | 示例
           

摘要

A new method to introduce size-dependence in crystal plasticity constitutive models, recently developed for single-phase polycrystal materials, is extended to two-phase single crystal materials. The precipitate size-dependent crystal plasticity constitutive model is developed by accounting for the resistance to dislocation nucleation and mobility at a material point in the matrix phase near the interface between the precipitate and matrix phases (referred to as precipitate-matrix interface influence region). Following the crystal plasticity constitutive modeling principle, changes in strength and straining-hardening characteristics in the precipitate-matrix interface influence region are captured by introducing a shear flow strain parameter equivalent to the resistance to dislocation nucleation. As a result, for the interface influence region with its thickness and the distribution of the equivalent shear flow strain remaining the same irrespective of the unit-cell size, the precipitate size-dependence is naturally evolved in the constitutive model. A simplified model that considers the precipitate-matrix interface effect on an average sense in the matrix phase is also developed under the general framework. Implementation of this general framework is demonstrated by considering the case of a power-law flow rule and a hyperbolic-secant hardening rule. Accordingly, a characteristic length-scale parameter that defines the effective precipitate size is introduced. Finally, the precipitate size-dependent constitutive model was implemented on a multi-scale computational framework developed by NASA Glenn Research Center. The elastic-plastic behavior of a full-scale Ni-based superalloy disk with variations in the precipitate size along the radius is analyzed as an example problem for the size-dependent multi-scale model.
机译:最近为单相多晶材料开发的一种在晶体可塑性本构模型中引入尺寸相关性的新方法已扩展到两相单晶材料。析出物尺寸相关的晶体可塑性本构模型是通过考虑在析出物与基体相之间的界面附近的基体相中的材料点(称为析出物-基体界面影响区域)对位错形核和迁移率的抵抗力而开发的。遵循晶体可塑性本构模型的原理,通过引入等效于位错形核抵抗力的剪切流动应变参数来捕获沉淀物-基体界面影响区域的强度和应变硬化特性变化。结果,对于界面影响区域,其厚度和等效剪切流应变的分布保持不变,而与晶胞尺寸无关,沉淀物尺寸依赖性在本构模型中自然发展。在通用框架下,还开发了一种简化模型,该模型考虑了基质相中平均意义上的沉淀物-基质界面效应。通过考虑幂律流规则和双曲正割强化规则的情况来演示此通用框架的实现。因此,引入了定义有效沉淀物尺寸的特征长度尺度参数。最后,在美国国家航空航天局格伦研究中心开发的多尺度计算框架上实现了取决于沉淀物尺寸的本构模型。分析了一个全尺寸镍基高温合金圆盘的弹性塑性行为,该沉积物沿半径方向的变化是尺寸依赖型多尺度模型的一个示例问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号