...
首页> 外文期刊>Materials Science and Engineering >Corrigendum to 'Fabrication of Ti-Al_3Ti core-shell structured particle reinforced Al based composite with promising mechanical properties' [Mater. Sci. Eng. A 639 (2015) 269-273]
【24h】

Corrigendum to 'Fabrication of Ti-Al_3Ti core-shell structured particle reinforced Al based composite with promising mechanical properties' [Mater. Sci. Eng. A 639 (2015) 269-273]

机译:“制造具有良好机械性能的Ti-Al_3Ti核-壳结构的颗粒增强的铝基复合材料”的更正。科学。 A 639(2015)269-273]

获取原文
获取原文并翻译 | 示例
           

摘要

The authors of the above paper regret that there was a mistake in the discussion of the formation of pores in the intermetallic layer, although it does not change the main conclusions of our published paper. The corrected version of the first paragraph in Section 3 (Results and discussion) is below: Fig. 1a shows an X-ray diffraction (XRD) pattern of the sintered sample. It can be seen that the composite has three phases, including Al, Ti and Al_3Ti. Fig.1b shows an SEM image of the composite, showing that a lot of core-shell structured particles distribute uniformly in the Al matrix. Fig.1c shows an enlarged SEM image and the corresponding EDS analysis. It can be seen that the composite consists of three different phases, including dark matrix, white core and grey shell. The EDS results reveal that the dark matrix is pure Al, the white core is pure Ti, and the grey shell is composed of ~71 at% Al and ~29 at% Ti, indicating that the shell is in situ formed intermetallic compound Al_3Ti. The relative density of the composite is 95.7%, which is higher than that of the Fe-Al_xFe_y core-shell structured particle reinforced composite (~92.8%) fabricated using the same method. However, it can be seen from Fig.1c that a few small sized pores still exist in the intermetallic layer close to the Al side and Al matrix (indicated by black and white arrows, respectively). The pores in the intermetallic layer are due to the fact that Al atoms diffuse faster than Ti atoms during sintering process, a phenomenon called Kirkendall effect. Due to the faster diffusion of Al, not all sites are occupied by the flow of Ti atoms from opposite direction and, therefore, the vacancies would be left in the Al layer. The difference in the coefficient of diffusion between Al and Ti will forward the interface moving toward the Ti-rich side and away from the Al-rich side. If there is no enough plastic relaxation during the process, vacancies will coalesce to form pores or voids in the reaction layer. The cavities in the matrix might be caused by the oxide layer of Al particles and the original pores in the green compact. The oxide layer can substantially degrade the solid-phase-sintering ability through inhibiting the elements diffusion and some relative large pores in the green compact are difficult to disappear completely and remain as residual porosity in the sintered material.
机译:上述论文的作者感到遗憾的是,尽管讨论并没有改变我们发表论文的主要结论,但在讨论金属间层中孔的形成方面存在错误。以下是第3节(结果和讨论)中第一段的修正版本:图1a显示了烧结样品的X射线衍射(XRD)图。可以看出,该复合材料具有三个相,包括Al,Ti和Al_3Ti。图1b显示了复合材料的SEM图像,表明许多核-壳结构的颗粒均匀分布在Al基体中。图1c显示了放大的SEM图像和相应的EDS分析。可以看出,复合材料由三个不同的相组成,包括暗矩阵,白核和灰壳。 EDS结果表明,深色基质为纯Al,白色核为纯Ti,灰色壳由〜71 at%Al和〜29 at%Ti组成,表明该壳是原位形成的金属间化合物Al_3Ti。复合材料的相对密度为95.7%,高于用相同方法制备的Fe-Al_xFe_y核-壳结构的颗粒增强复合材料的相对密度(〜92.8%)。然而,从图1c可以看出,在靠近Al侧和Al基体的金属间层中仍然存在一些小尺寸的孔(分别由黑色和白色箭头指示)。金属间层中的孔是由于在烧结过程中Al原子比Ti原子扩散得更快的事实,这种现象称为Kirkendall效应。由于Al的快速扩散,并不是所有的位置都被相反方向的Ti原子流占据,因此,空位会留在Al层中。 Al和Ti之间的扩散系数的差异将使界面朝富钛侧移动并远离富铝侧。如果在此过程中没有足够的塑性松弛,则空位会聚结在反应层中形成孔或空隙。基体中的孔洞可能是由Al颗粒的氧化物层和生坯中的原始孔引起的。氧化物层可通过抑制元素扩散而实质上使固相烧结能力降低,并且生坯中的一些相对较大的孔难以完全消失并作为残留的孔隙率保留在烧结材料中。

著录项

  • 来源
    《Materials Science and Engineering》 |2016年第22期|222-222|共1页
  • 作者单位

    State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;

    State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China,Institute for Materials Microstructure, Central South University, Changsha 410083, China;

    State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;

    State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China,Institute for Materials Microstructure, Central South University, Changsha 410083, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号