...
首页> 外文期刊>Materials Science and Engineering >High temperature compressive creep of spark plasma sintered zirconium (oxy-)carbide
【24h】

High temperature compressive creep of spark plasma sintered zirconium (oxy-)carbide

机译:火花等离子体烧结(氧)碳化锆的高温压缩蠕变

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of stoichiometry (i.e. carbon and oxygen contents) and microstructure (i.e. micro-sized grains) on creep mechanism of zirconium oxycarbide was considered. The synthesis of ZrC_xO_y powder of controlled stoichiometry and without impurity has been performed via the carboreduction route. Compressive creep experiments were conducted at 1500-1600 ℃ under applied stresses ranging from 60 to 140 MPa on fully dense zirconium oxycarbide specimens obtained by spark plasma sintering. The higher oxygen content composition (i.e. ZrC_(0.79)O_(0.13)) reveals low creep resistance in contrary to ZrC_(0.94)O_(0.05) composition. The analysis of the creep data shows the existence of a linear creep limit (σ_t)- At low stress (i.e. σ ≤ σ_t = 100 MPa, n ≈ 1, m ≈ 1), the creep mechanism seems to be independent of the chemical composition, and is governed by zirconium volume diffusion. At high stress (i.e. σ ≥ σ_t= 100 MPa, n ≈ 3, m ≈ 0), a power law regime of creep appears. However, the nature of the rate-determining step of creep process depends on stoichiometry. The limiting species for volume diffusion are (ⅰ) the metal atom for ZrC_(0.94)O_(0.05); (ⅱ) and the carbon atom for ZrC_(0.79)O_(0.13) linked to a Rowcliffe dislocation diffusion mechanism.
机译:考虑了化学计量学(即碳和氧含量)和微观结构(即微尺寸晶粒)对碳氧化锆蠕变机理的影响。经由碳还原途径已经进行了化学计量可控且无杂质的ZrC_xO_y粉末的合成。在通过火花等离子体烧结获得的完全致密的氧化碳锆试样上,在1500-1600℃施加60至140 MPa的应力的条件下进行了压缩蠕变实验。与ZrC_(0.94)O_(0.05)组成相反,较高的氧含量组成(即ZrC_(0.79)O_(0.13))显示出较低的抗蠕变性。蠕变数据分析表明存在线性蠕变极限(σ_t)-在低应力下(即σ≤σ_t= 100 MPa,n≈1,m≈1),蠕变机理似乎与化学成分无关,并受锆体积扩散的控制。在高应力下(即σ≥σ_t= 100 MPa,n≈3,m≈0),出现了幂律蠕变状态。然而,蠕变过程的速率确定步骤的性质取决于化学计量。体积扩散的限制种类为(ⅰ)ZrC_(0.94)O_(0.05)的金属原子; (ⅱ)和ZrC_(0.79)O_(0.13)的碳原子与Rowcliffe位错扩散机制相关。

著录项

  • 来源
    《Materials Science and Engineering》 |2014年第26期|326-334|共9页
  • 作者单位

    Laboratoire Sciences des Procedes Ceramiques et Traitements de Surface, UMR CNRS 7315, Centre Europeen de la Ceramique, 12, rue Atlantis, F-87068 Limoges Cedex, France;

    Laboratoire Sciences des Procedes Ceramiques et Traitements de Surface, UMR CNRS 7315, Centre Europeen de la Ceramique, 12, rue Atlantis, F-87068 Limoges Cedex, France;

    Laboratoire Sciences des Procedes Ceramiques et Traitements de Surface, UMR CNRS 7315, Centre Europeen de la Ceramique, 12, rue Atlantis, F-87068 Limoges Cedex, France;

    Laboratoire Sciences des Procedes Ceramiques et Traitements de Surface, UMR CNRS 7315, Centre Europeen de la Ceramique, 12, rue Atlantis, F-87068 Limoges Cedex, France;

    Laboratoire Sciences des Procedes Ceramiques et Traitements de Surface, UMR CNRS 7315, Centre Europeen de la Ceramique, 12, rue Atlantis, F-87068 Limoges Cedex, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mechanical characterization; Ceramics; Sintering; Dislocations; Plasticity;

    机译:机械特性陶瓷;烧结;脱位;可塑性;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号