首页> 外文期刊>Materials Science and Engineering >High-temperature yield strength and its dependence on primary creep and recovery
【24h】

High-temperature yield strength and its dependence on primary creep and recovery

机译:高温屈服强度及其对一次蠕变和恢复的依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

Elasto-Delayed-Elastic-Viscous (EDEV), a predictive material model for 'quasi constant-structure' pri mary creep is used in developing an algorithm for predicting stress-strain diagrams at constant strain rates. The strain rate dependence of the 0.2% offset yield-strength (σ_y), time to yield, and the amounts of permanent (viscous) and the recoverable (anelastic or delayed elastic) strain components of the 0.2% offset strain can also be evaluated. Six material constants required for calculations can be obtained from short-term (few seconds to a few hours), constant-stress Strain Relaxation and Recovery Tests (SRRTs). The method is illustrated by calculations made for Ni-based fee alloy, Waspaloy at 732 ℃ (0.62T_m) and Ti-based, alpha (hexagonal)-beta(bcc) alloy Ti-6246 at 600 ℃ (0.45T_m). In the ASTM recommended strain-rate range, 5 × 10~(-5) s~(-1) to 1.2 × 10~(-4) s~(-1), σ_y increases by 6% for Waspaloy and 15% for Ti-6246. In this range, the 0.2% offset strain consists of 50% delayed elastic (anelastic) strain for Waspaloy and 70% for Ti-6246. Proportional limit is governed entirely by the delayed elastic effect or the Elasto-Delayed-Elastic (EDE) regime. Intragranular dislocation creep does not play the dominant role up to yield for the materials and temperatures considered, suggesting a shift in paradigm from conventional ideas. The EDEV model, in conjunction with SRRTs (which can be realized using a single specimen), can be used as a tool for char acterizing and developing new alloys and ceramics or optimizing processing including grain-boundary engineering.
机译:弹性延迟弹性粘弹性(EDEV)是一种“准恒定结构”主蠕变的预测材料模型,用于开发一种算法,用于预测恒定应变速率下的应力-应变图。还可以评估0.2%偏移屈服强度(σ_y)的应变率依赖性,屈服时间以及0.2%偏移应变的永久(粘滞)和可恢复(无弹性或延迟弹性)应变分量的量。计算所需的六个材料常数可以从短期(几秒钟到几小时),恒应力应变松弛和恢复测试(SRRT)中获得。通过对镍基中间合金Waspaloy在732℃(0.62T_m)和Ti基α-六边形(bcc)Ti-6246合金在600℃(0.45T_m)的计算进行了说明。在ASTM建议的应变率范围内(5×10〜(-5)s〜(-1)至1.2×10〜(-4)s〜(-1),Waspaloy的σ_y增加6%,Waspalloy的σ_y增加15% Ti-6246。在此范围内,0.2%的偏移应变包括Waspaloy的50%延迟弹性(无弹性)应变和Ti-6246的70%延迟应变。比例极限完全由延迟弹性效应或“弹性延迟弹性”(EDE)机制控制。对于所考虑的材料和温度,晶内位错蠕变在屈服方面没有起主要作用,这表明范式已从传统观念转变。 EDEV模型与SRRT结合使用(可以使用单个样品实现),可以用作表征和开发新合金和陶瓷或优化包括晶界工程的工艺的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号