首页> 外文期刊>Materials Science and Engineering >Microstructure, cold workability and strain hardening behavior of trimodaled AA 6061-TiO_2 nanocomposite prepared by mechanical alloying
【24h】

Microstructure, cold workability and strain hardening behavior of trimodaled AA 6061-TiO_2 nanocomposite prepared by mechanical alloying

机译:机械合金化制备的三峰AA 6061-TiO_2纳米复合材料的组织,冷加工性和应变硬化行为

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, the improvement of compressive ductility while maintaining high strength and toughness for nanocrystalline materials by cold upsetting (incremental loads) of bulk trimodaled composite was studied. Mechanically alloyed nanocrystalline (NC) AA 6061 alloy powders reinforced with nano TiO_2 were blended with 0,5,10,15,20,25, and 30 wt.% coarse grain (CG) elemental powders related to AA 6061 alloy composition to produce trimodal microstructure. The synthesized composite preforms were characterized by optical microscope, scanning electron microscope, transmission electron microscope and X-ray diffraction. The room temperature compressive deformation behavior was evaluated under triaxial stress state condition. With increasing percentage of CG phase in the nanocomposite, the gradual improvement in compressive ductility was observed at the cost of a small amount of strength but it favored the ease of deformation. The 15% CG trimodal composite exhibited an extremely high compressive strength of 935 MPa due to non-coalescence of individual CG particles and effective load transfer occurred in multi scale microstructures. But the 30% CG trimodal composite showed an incremental compressive ductility of around 16% while sacrificing a small amount of strength (845 MPa) and this composite displayed improved toughness (area under true effective stress and true effective strain curve) of over 600% than nanocomposite (0% CG). Also, the percentage cold workability of 30% CG composite was six times higher than that of 0% CG composite. Hence, the 30% CG trimodal composite was observed to be the good one as it exhibited a better strain hardening behavior while maintaining considerable strength and toughness.
机译:在目前的工作中,研究了通过本体三峰复合材料的冷setting锻(增量载荷)在保持纳米晶体材料的高强度和韧性的同时提高压缩延展性的方法。将用纳米TiO_2增强的机械合金化纳米晶(NC)AA 6061合金粉末与与AA 6061合金成分有关的0、5、10、15、20、25和30 wt。%粗晶粒(CG)元素粉末共混以生产三峰微观结构。通过光学显微镜,扫描电子显微镜,透射电子显微镜和X射线衍射对合成的预成型坯进行了表征。在三轴应力状态条件下评估室温压缩变形行为。随着纳米复合材料中CG相百分比的增加,以较小的强度为代价观察到压缩延展性的逐渐改善,但有利于易于变形。 15%CG三峰复合材料由于单个CG颗粒不凝结而表现出极高的935 MPa抗压强度,并且在多尺度微结构中发生了有效的载荷传递。但是30%的CG三峰复合材料显示出约16%的增量压缩延展性,同时牺牲了少量的强度(845 MPa),并且该复合材料的韧性(在真实有效应力和真实有效应变曲线下的面积)提高了600%以上。纳米复合材料(0%CG)。同样,30%CG复合材料的冷加工百分比是0%CG复合材料的六倍。因此,观察到30%CG三峰复合材料是良好的复合材料,因为它表现出更好的应变硬化行为,同时保持了相当的强度和韧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号