首页> 外文期刊>Materials Science and Engineering >Influence of strain rate and temperature on the deformation mechanisms of a fine-grained Ti-6A1-4V alloy
【24h】

Influence of strain rate and temperature on the deformation mechanisms of a fine-grained Ti-6A1-4V alloy

机译:应变率和温度对细菌Ti-6a1-4V合金变形机制的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Depending on their initial microstructure, titanium alloys, as the Ti-6A1-4V may have activation of different deformation mechanisms during hot forming processes. In this work, interrupted tensile tests and heat treatments are used to improve the understanding of the mechanical and microstructural behaviour of a finegrained Ti-6Al-4V alloy at two temperatures (750°C and 920°C) and so for two different β phase fractions. The microstructural features like, α grain size and phase fraction, were determined by Scanning Electron Microscope (SEM) and image analysis. Moreover, evolution of the preferred crystallographic orientation of a grains and local misorientations between and inside grains were obtained by Electron Backscatter Diffraction (EBSD). The strain rate sensitivity parameter as well as the activation energy were deduced from mechanical tests. It appears, from all these microstructural and mechanical data, that several mechanisms are activated depending on the strain level and on the temperature range. At 750°C, for a high strain rate, the deformation is mainly controlled by dislocations activity in the α phase (texture changes, dynamic recrystallization) and, at very low strain rate, by probably GBS accommodated with dislocations activity into α (recovery) and β. On the contrary at 920°C, a clear decrease of the overall texture intensity associated with a high m value suggests that GBS is the dominant mode of deformation. Nevertheless, as the α/β volume fraction is around 48 %/52 % at this temperature, not only the α phase but also the β phase as well as α/α and β/p boundaries might contribute to the flow behaviour. During long deformation time (low strain rate and high temperature), dynamic coarsening behaviour (both into a and β), that is controlled by bulk diffusion, can occur and modify the type, the distribution and decrease the number of a/β, a/a and β/β boundaries. This can be partly related to the flow hardening observed at 920°C and 10~(-4) s~(-1).
机译:取决于它们的初始组织,钛合金,因为Ti-6a1-4v在热成型过程中可能具有不同的变形机制的激活。在这项工作中,中断的拉伸试验和热处理用于改善在两个温度(750℃和920℃)下进行Finegrated Ti-6Al-4V合金的机械和微观结构行为的理解,并且对于两个不同的β相分数。通过扫描电子显微镜(SEM)和图像分析来确定α粒度和相位级分的微观结构特征。此外,通过电子反向散射衍射(EBSD)获得晶粒和内部晶粒之间的优选结晶取向和内部晶粒的局部错误化的演变。从机械测试推导出应变率灵敏度参数以及激活能量。从所有这些微结构和机械数据出现,若干机构取决于应变水平和温度范围。在750℃下,为了高应变率,变形主要是通过α相的脱位活性来控制(质地变化,动态重结晶),并且在非常低的应变率下,可能通过GBS容纳在α(恢复)中的脱位活性。和β。相反,在920°C时,与高M值相关的整体质地强度的明显降低表明GBS是主导变形模式。然而,随着α/β体积分数在该温度下约为48%/ 52%,不仅α相而且β相以及α/α和β/ p边界可能有助于流动行为。在长变形时间(低应变率和高温)期间,通过散装扩散控制的动态粗化行为(既是β),也会发生并改变类型,分布和减少A /β的数量,a / a和β/β边界。这可以与在920℃和10〜(-4)S〜(-1)中观察到的流动硬化部分部分。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第jul14期|139718.1-139718.14|共14页
  • 作者单位

    Institut Clement Ader OCA) Universite de Toulouse CNRS IMT Mines Albi UPS INSA ISAE-SUPAERO Campus Jarlard 81013 AM CT Cedex 09 France;

    Institut Clement Ader OCA) Universite de Toulouse CNRS IMT Mines Albi UPS INSA ISAE-SUPAERO Campus Jarlard 81013 AM CT Cedex 09 France;

    Institut Clement Ader OCA) Universite de Toulouse CNRS IMT Mines Albi UPS INSA ISAE-SUPAERO Campus Jarlard 81013 AM CT Cedex 09 France;

    CIRIMAT Universite de Toulouse CNRS 4 allee Emile Monso BP 44362 31030 Toulouse Cedex 04 France;

    Department of Advanced Materials Science Faculty of Engineering Kagawa University 2217-20 Hayashi-cho Takamatsu Kagawa 761-0396 Japan;

    Institut Clement Ader OCA) Universite de Toulouse CNRS IMT Mines Albi UPS INSA ISAE-SUPAERO Campus Jarlard 81013 AM CT Cedex 09 France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Titanium alloys; Mechanical behaviour; Superplasticity; Interrupted tensile test; Texture; β-phase; Electron backscatter diffraction (EBSD);

    机译:钛合金;力学行为;超塑性;中断拉伸试验;质地;β相;电子反向散射衍射(EBSD);

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号