首页> 外文期刊>Materials Science and Engineering >Micro-compression studies of face-centered cubic and body-centered cubic high-entropy alloys: Size-dependent strength, strain rate sensitivity, and activation volumes
【24h】

Micro-compression studies of face-centered cubic and body-centered cubic high-entropy alloys: Size-dependent strength, strain rate sensitivity, and activation volumes

机译:面为中心立方体和身体中心立方高熵合金的微压缩研究:尺寸依赖性强度,应变率灵敏度和激活体积

获取原文
获取原文并翻译 | 示例
           

摘要

High-entropy alloys (HEAs) are evolving multi-component metallic systems, wherein generally five or more principal elements tend to provide strong solid-solution strengthening. In contrast to typical metals and alloys, the deformation mechanisms in HEAs have not been well understood so far. Here, we employ strain rate jump micro-compression testing to study the deformation mechanisms of two face-centered cubic (fcc) (FeCoNiCuPd and CrMnFeCoNi) and two body-centered cubic (bcc) HEAs (VNbMoTaW and NbMoTaW). The size-dependent strength, strain rate sensitivity, and activation volumes of the HEAs are compared with those of pure fcc and bcc metals. Both the fcc and bcc HEA pillars exhibit relatively low size dependence of strength compared to their corresponding pure metals, which can be attributed to the increased lattice distortion. Both the fcc and bcc HEAs exhibit enhanced strain rate sensitivity (SRS) with reducing pillar sizes. The FeCoNiCuPd HEA exhbits slightly lower size depedence of flow stress and a larger activation volume than those of the CrMnFeCoNi HEA (Cantor alloy), which could be associated with the higher dislocation motion resistance by adding palladium atoms with a markedly larger atomic size. The VNbMoTaW HEA also shows slightly lower size depedence of flow stress than that of the NbMoTaW HEA, which could be due to higher Peierls stress by adding the fifth element vanadium. Although there is no significant difference regarding activation volumes between HEAs and their corresponding pure metals, further studies are still needed to give a fundamental understanding of deformation mechanisms in a broad range of HEAs.
机译:高熵合金(HEA)正在进行多组分金属体系,其中通常五个或更多个主元素倾向于提供强的固溶强化。与典型的金属和合金相比,到目前为止,HEA的变形机制并未得到很好的理解。在这里,我们采用应变率跳跃微压缩测试,研究两个以脸 - 中心的立方(FCC)(Feconicupd和Crmnfeconi)的变形机制和两个以中心的立方(BCC)HEAS(VNBMOTAW和NBMOTAW)。将SEA的尺寸依赖性强度,应变率灵敏度和活化体积与纯FCC和BCC金属进行比较。与其相应的纯金属相比,FCC和BCC Hea柱均表现出相对低的强度依赖性,这可以归因于晶格变形的增加。 FCC和BCC HEAS都表现出增强的应变速率灵敏度(SRS),降低柱尺寸。 Feconicupd Hea屈光度略低于流量应力的尺寸较小,并且比CRMNFeconi Hea(Cantor合金)的活化体积较大,这可以通过用明显较大的原子尺寸添加钯原子来与较高的脱位运动阻力相关。 VNBMotaw Hea还显示出比NBMotaw Hea的流量应力略微较小的差,这可能是由于添加第五元素钒的PEIerls应力。虽然SEES和它们相应的纯金属之间的激活体积没有显着差异,但仍然需要进一步的研究,以便对广泛的HEAS中的变形机制产生基本的理解。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第jul14期|139429.1-139429.9|共9页
  • 作者单位

    ETH Zurich Department of Materials Laboratory for Nanometallurgy Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland;

    ETH Zurich Department of Materials Laboratory for Crystallography Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland;

    University of Toronto Department of Materials Science and Engineering Laboratory for Extreme Mechanics and Additive Manufacturing 184 College St ON M5S 3E4 Toronto Canada;

    ETH Zurich Department of Materials Laboratory for Crystallography Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland;

    ETH Zurich Department of Materials Laboratory for Nanometallurgy Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland;

    ETH Zurich Department of Materials Laboratory for Nanometallurgy Vladimir-Prelog-Weg 5 Zurich 8093 Switzerland;

    University of Toronto Department of Materials Science and Engineering Laboratory for Extreme Mechanics and Additive Manufacturing 184 College St ON M5S 3E4 Toronto Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Micro-compression; High-entropy alloys; Size effect; Strain rate sensitivity; Activation volume; Plastic deformation;

    机译:微压缩;高熵合金;尺寸效应;应变率灵敏度;激活量;塑性变形;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号