首页> 外文期刊>Materials Science and Engineering >High-temperature low cycle fatigue behavior of an equiatomic CoCrFeMnNi high-entropy alloy
【24h】

High-temperature low cycle fatigue behavior of an equiatomic CoCrFeMnNi high-entropy alloy

机译:赤素COCRFEMNNI高熵合金的高温低周疲劳行为

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, low cycle fatigue (LCF) behavior of an equiatomic CoCrFeMnNi high entropy alloy (HEA) is correlated to the microstructural evolution at 550 °C. The fully reversed strain-controlled fatigue tests were conducted in air under strain amplitudes ranging from 0.2% to 0.8%. The measured cyclic stress response showed three distinct stages which include initial cyclic hardening followed by a quasi-stable cyclic response until failure. The rate and amount of cyclic hardening increased with the increase in strain amplitude. In comparison to common austenitic stainless steels, CoCrFeMnNi HEA shows comparable strength and improved LCF lifetime at similar testing conditions. Electron-microscopy investigations after failure reveal no noticeable change in grain size, texture and annealing twins density. Initial cyclic hardening is attributed to the dislocations multiplication and dislocation-dislocation as well as dislocation-solute atom interactions. The quasi-stable cyclic response is associated with the equilibrium between dislocation multiplication and annihilation, which also leads to the formation of complex dislocation structures such as ill-defined walls and cells, particularly at higher strain amplitudes. Besides, the material exhibits serrated plastic-flow due to interactions between mobile dislocations and diffusing solute atoms (such as Cr, Mn and Ni). Lastly, segregation in the form of Cr- and NiMn-enriched phases were observed near grain boundaries, which appears to have a detrimental effect on the fatigue life.
机译:在本作的工作中,赤素COCRFEMNNI高熵合金(HEA)的低循环疲劳(LCF)行为与550℃的微观结构演化相关。完全反转的应变控制的疲劳试验在40%至0.8%的应变幅度下在空气中进行。测量的循环应力反应显示三个不同的阶段,其包括初始环状硬化,然后是准稳定的环状响应直到故障。随着应变幅度的增加,循环硬化的速率和量增加。与常见的奥氏体不锈钢相比,COCRFEMNNI HEA在类似的测试条件下表现出相当的强度和改善的LCF寿命。失败后的电子显微镜调查显示晶粒尺寸,质地和退火的蛋白质密度没有明显的变化。初始环状硬化归因于脱位倍增和错位 - 位错以及脱位溶质原子相互作用。准稳定的循环响应与位错乘法和湮灭之间的平衡相关,这也导致形成复杂的位错结构,例如诸如缺乏限定的壁和细胞,特别是在较高的应变幅度下。此外,由于移动脱位和扩散溶质原子(如Cr,Mn和Ni)之间的相互作用,该材料表现出锯齿状塑料流动。最后,在晶界附近观察到富集阶段的形式的偏析,这似乎对疲劳寿命产生了不利影响。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第jul22期|139781.1-139781.12|共12页
  • 作者单位

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholxz-Platz 1 76344 Eggenstein Leopoldshafen Germany;

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholxz-Platz 1 76344 Eggenstein Leopoldshafen Germany;

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholxz-Platz 1 76344 Eggenstein Leopoldshafen Germany;

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholxz-Platz 1 76344 Eggenstein Leopoldshafen Germany;

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Engelbert-Amold-Strasse 4 76131 Karlsruhe Germany;

    Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) Institute for Complex Materials D-01069 Dresden Germany Institute of Materials Science Technische Vniversltaet Bergakademie Freiberg 09599 Freiberg Germany;

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Engelbert-Amold-Strasse 4 76131 Karlsruhe Germany;

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Engelbert-Amold-Strasse 4 76131 Karlsruhe Germany;

    Institute for Applied Materials Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholxz-Platz 1 76344 Eggenstein Leopoldshafen Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High entropy alloy; Low cycle fatigue; Microstructural evolution; Serration; Segregation;

    机译:高熵合金;低循环疲劳;微观结构演变;血液;分离;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号