...
首页> 外文期刊>Materials Science and Engineering >Martensite transformation induced superplasticity and strengthening in single crystalline CoNiCrFeMn high entropy alloy nanowires: A molecular dynamics study
【24h】

Martensite transformation induced superplasticity and strengthening in single crystalline CoNiCrFeMn high entropy alloy nanowires: A molecular dynamics study

机译:马氏体转化诱导的超塑性和加强单晶番荔枝高熵合金纳米线:分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we report simultaneous superplasticity and strengthening in single crystalline face-centered cubic (FCC) CoNiCrFeMn high entropy alloy (HEA) nanowires through synergistic martensitic phase transformation and micro-twin nucleation as revealed by molecular dynamics simulations. Furthermore, in contrast to the irreversible martensite transformation that has been previously reported in bulk HEAs under high pressure, the martensitic transformation in HEA nanowires is found to be reversible upon reverse loading. Shape memory effects can thus be enabled in HEA nanowires, although such effects are found to be mitigated for some orientations due to stacking fault crossing. Those mechanisms are dramatically different from deformation twinning dominated superplasticity in conventional FCC metal and intermetallic nanowires. While deformation twinning is still observed in FCC HEA nanowires, three pathways are found and in particular. All the novel mechanical behaviors in FCC CoNiCrFeMn HEA nanowires reported in this study can be explained by their unique negative stacking fault and martensite energies, which may shed some light on understanding the mechanical behavior of general HEAs under more complicated loading conditions.
机译:在这项工作中,通过分子动力学模拟的协同马氏体相变和微双胞胎核来报告单晶面对立方(FCC)Conicrfemme(FCC)Conicrfems高熵合金(Hea)纳米线的同时复塑性和强化。此外,与先前在高压下散装HEAS中的不可逆马氏体转化形成鲜明对比,发现HEA纳米线中的马氏体转化在反向载荷时可逆。因此,可以在Hea纳米线中使能形状记忆效果,尽管由于堆叠故障交叉而被发现这种效果被用于一些方向来减轻一些方向。这些机制与传统FCC金属和金属间纳米线中的孪晶占主导塑性的变形孪生统治超塑性显着不同。虽然在FCC Hea纳米线中仍观察到变形Twinning,但发现了三种途径。本研究中报告的FCC ConicrveMemn纳米线中的所有新型机械行为都可以通过其独特的负堆叠故障和马氏体能量来解释,这可能会在更加复杂的负载条件下了解一般遗产的机械行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号