首页> 外文期刊>Materials Science and Engineering >The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure
【24h】

The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure

机译:钛合金内疲劳裂纹引发和早期生长的机理,具有层状合金和等式的微观结构

获取原文
获取原文并翻译 | 示例
       

摘要

Traditionally, equiaxed α grains rather than lamellar microstructure (LM) domains in titanium alloys are regarded as potential internal crack origins in high-cycle fatigue (HCF) and very-high-cycle fatigue (VHCF) regimes. Here, we found that the fatigue crack is prone to initiate from a large LM domain in a titanium alloy with the composition of LM and equiaxed microstructure (EM) of fine a grains. Then, the mechanisms of internal crack initiation and early growth for the cases of HCF and VHCF under stress ratio R = -1, 0.1 and 0.5 were addressed and a mechanism chart was constructed to illustrate the internal cracking behavior, especially showing that the numerous cyclic pressing process dominates the related microstructure evolution with grain size refinement and nanograin formation underneath the fracture surfaces in the region of crack initiation and early growth.
机译:传统上,钛合金中的等轴α颗粒而不是层状微观结构(LM)结构域被认为是高循环疲劳(HCF)和非常高循环疲劳(VHCF)制度中的潜在内裂起源。在这里,我们发现疲劳裂纹易于从钛合金中的大型LM结构域引发与细粒的LM和等式的微观结构(EM)的组合物引发。然后,解决了应力比R = -1,0.1和0.5下HCF和VHCF病例的内部裂纹起始和早期生长的机制,构建了机制图表,以说明内部裂缝行为,特别是显示众多循环压制过程主要用裂纹引发和早期生长区域的裂缝表面下的晶粒尺寸细化和纳米菌形成的相关微观结构演变。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第4期|140110.1-140110.14|共14页
  • 作者单位

    LNM Institute of Mechanics Chinese Academy of Sciences Beijing 100190 China School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China;

    LNM Institute of Mechanics Chinese Academy of Sciences Beijing 100190 China School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China;

    LNM Institute of Mechanics Chinese Academy of Sciences Beijing 100190 China School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China;

    LEME University Paris Quest Nanterre La Defense 50 rue de Serves Ville-d'Avray 92410 France MAI - National Research University 4 Volokolamskoe Hwy A-80 GSP-3 Moscow 125993 Russia;

    Aviaregister Air. Sheremetevo-1 PO Box 54 Moscow Reg Chimkovskiy State 141426 Russia;

    Arts et Metiers Institute of Technology CNRS Universite de Bordeaux Bordeaux INP INRAE I2M Bordeaux Esplanade des Arts et Metiers Talence 33405 France;

    LNM Institute of Mechanics Chinese Academy of Sciences Beijing 100190 China School of Engineering Science University of Chinese Academy of Sciences Beijing 100049 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Titanium alloy; Crack initiation; Facet; Very-high-cycle fatigue; Lamellar microstructure;

    机译:钛合金;开采启动;面部;非常高循环疲劳;层状微观结构;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号