首页> 外文期刊>Materials Science and Engineering >The effects of grain morphology and crystallographic orientation on fatigue crack initiation in a metastable (3 titanium alloy Ti-7333
【24h】

The effects of grain morphology and crystallographic orientation on fatigue crack initiation in a metastable (3 titanium alloy Ti-7333

机译:晶粒形态和晶体取向对亚稳态疲劳裂纹引发的影响(3钛合金Ti-7333

获取原文
获取原文并翻译 | 示例
           

摘要

Introducing fine α particles into the soft β matrix contributes significantly to the strengthening of the metastable β titanium alloy microstructures. However, this microstructure design often leads to microcracks initiated at the α/β interface. In this work, fatigue crack-initiation (FCI) modes and FCI mechanisms at high-cycle fatigue regime in a metastable β titanium alloy, Ti-7Mo-3Nb-3Cr-3Al, are investigated by fracture surface observation and focused-ion-beam cross-section characterizations on a 2-D section through the faceted grains. Based on fracture observation, four categories of FCI modes were summarized from the given microstructures. Fatigue damage mechanism is non-unique and strongly dependent on microstructural constituent combinations although only subtle differences among them. FCI site revealed the compound primary-α (α_p)/β facets or isolated α_p facets. Elongated α_p particle or multiple equiaxed α_p particles favorably oriented for basal slip are preferred crack-initiation sites, resulting in the formation of near basal facets. The β facet was in close correspondence to the {110} slip plane with high Schmid factor. The occurrence of the elongated α_p facet is usually accompanied by the rugged β facet. Further, three classes of fatigue-critical microstructural configurations are deduced. This work provides an insight into the fatigue damage process of the α precipitate strengthened metastable β titanium alloys.
机译:将细α颗粒引入软β基质中,显着促进了亚稳态β钛合金微观结构的强化。然而,这种微结构设计通常导致在α/β接口处引发的微裂纹。在该作品中,通过断裂表面观察和聚焦离子梁研究了稳定性β钛合金中的高周疲劳制度,在亚稳β钛合金中的疲劳裂缝启动(FCI)模式和FCI机制通过刻面晶粒对2-D段的横截面表征。基于断裂观察,总结了四类FCI模式,从给定的微观结构总结了。疲劳损伤机制是非独特的,强烈依赖于微观结构构成组合,尽管它们之间的微妙差异。 FCI网站揭示了复合初级-α(α_P)/β平面或隔离α_P方面。延长α_P颗粒或多种等式α_P颗粒对基底的基础,是优选的裂缝引发位点,导致近基部的形成。 β小平面与具有高乳化因子的{110}滑移平面紧密对应。细长α_P面的发生通常伴随着坚固的β小平面。此外,推导出三类疲劳临界微观结构配置。这项工作提供了对α沉淀强化载β钛合金的疲劳损伤过程的洞察。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第4期|140222.1-140222.14|共14页
  • 作者单位

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

    State Key Laboratory of Solidification Processing Northwestern Polytechnical University Xi'an Shaanxi 710072 China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    High cycle fatigue; Metastable β titanium alloy; Fatigue crack initiation; Short crack propagation; Faceting;

    机译:高周疲劳;亚稳β钛合金;疲劳裂纹启动;短裂缝繁殖;面位;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号