首页> 外文期刊>Materials Science and Engineering >On the microstructure evolution during low cycle fatigue deformation of wrought ATI 718Plus alloy
【24h】

On the microstructure evolution during low cycle fatigue deformation of wrought ATI 718Plus alloy

机译:锻造锻造ATI 718PLUS合金低循环疲劳变形的微观结构演变

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, strain-controlled low cycle fatigue (LCF) tests were performed at 704 °C using 0.25 Hz in cyclic frequency with tension-compression loading on the forged alloy 718Plus to investigate the fatigue performances determined by structures, and the corresponding microstructure evolutions and deformation mechanisms were analyzed through techniques of scanning electron microscope (SEM) and transmission electron microscope (TEM). The fatigue specimens from different locations (core and rim) showed similar response on cycle stress, but smaller grain size contributed to superior fatigue performance. Fatigue deformation induced the generation of η precipitates in grain interior and promoted the growth of grains and η precipitates, but brought insignificant change on the morphology of spherical γ' phase and slightly increase in particle size and γ'/γ lattice misfit, indicating its excellent mechanical stability at 704 °C. A transition area was observed between the η precipitates and γ matrix, which was determined to be γ phase via high resolution transmission electron microscopy (HRTEM) and elements mapping techniques. Twinning and dislocation planar slip bands were confirmed to be the primary fatigue deformation modes of alloy 718Plus. Dislocations piled up and formed networks at the edges of η precipitates during the fatigue process, inducing the initiation and propagation of micro-cracks. As the cycle accumulated, the η and γ' precipitates were sheared by gliding dislocations, resulting in weakened resistance to deformation and fatigue softening.
机译:在本工作中,在704℃下使用0.25Hz在循环频率上使用0.25Hz进行应变控制的低循环疲劳(LCF)测试,锻造合金718Plus上的张力压缩负载,研究由结构确定的疲劳性能,以及相应的微观结构通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)的技术分析了演进和变形机制。来自不同位置(核心和边缘)的疲劳试样显示出对循环应力的相似响应,但粒径较小造成较强的疲劳性能。疲劳变形诱导晶粒内部沉淀物的产生,并促进谷物和η沉淀的生长,但对球形γ'相的形态和粒径略微增加的变化带来了微不足道的变化,表明其优异的粒度和γ'/γ格式的变化,表明其优异704℃的机械稳定性。在η沉淀物和γ矩阵之间观察到过渡区域,该η通过高分辨率透射电子显微镜(HRTEM)和元素映射技术被确定为γ相。确认孪晶和脱位平面滑移带是合金718plus的主要疲劳变形模式。在疲劳过程中沉淀出η的边缘的脱位堆积和形成的网络,诱导微裂纹的开始和繁殖。由于累积的循环,通过滑动脱位剪切η和γ'沉淀物,导致耐抗变形和疲劳软化的耐耐受性。

著录项

  • 来源
    《Materials Science and Engineering》 |2020年第4期|140132.1-140132.12|共12页
  • 作者单位

    State Key Lab of Hydraulic Engineering Simulation and Safety School of Materials Science & Engineering Tianjin University Tianjin 300354 PR China;

    State Key Lab of Hydraulic Engineering Simulation and Safety School of Materials Science & Engineering Tianjin University Tianjin 300354 PR China Key Laboratory of the Ministry of Education for Modern Metallurgy Technology North China University of Science and Technology Tangshan 063210 China;

    State Key Lab of Hydraulic Engineering Simulation and Safety School of Materials Science & Engineering Tianjin University Tianjin 300354 PR China;

    State Key Lab of Hydraulic Engineering Simulation and Safety School of Materials Science & Engineering Tianjin University Tianjin 300354 PR China;

    State Key Lab of Hydraulic Engineering Simulation and Safety School of Materials Science & Engineering Tianjin University Tianjin 300354 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Alloy 718Plus; Low cycle fatigue; Deformation mechanism; η Precipitate; γ' Phase;

    机译:合金718plus;低循环疲劳;变形机制;η沉淀物;γ'阶段;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号