首页> 外文期刊>Materials Science and Engineering >Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy
【24h】

Hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high-entropy alloy fabricated by powder metallurgy

机译:粉末冶金制备的超细粒细粒型耐火性高熵合金的热变形行为

获取原文
获取原文并翻译 | 示例
           

摘要

The hot deformation behaviors of an ultrafine-grained MoNbTaTiV refractory high entropy alloy (RHEA) fabricated by powder metallurgy (P/M) were investigated using isothermal compression tests in the deformation temperature range of 1100 °C ~ 1300 °C and the strain rate range of 0.0005 s~(-1)0.5 s(-1). Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) techniques were used to analyze the effect of the deformation temperatures and the strain rates on the flow stress behaviors and microstructural evolution during hot deformation. The results showed that the flow stresses exhibit typical dynamic recrystallization (DRX) characteristics, but show work hardening characteristics at 1100 °C and 0.5 s(-1) deformation conditions and at 1200 °C and 0.5 s(-1) deformation conditions. With increasing deformation temperature and decreasing strain rate, the maximum compressive stresses were dramatically decreased, and the average grain sizes also slowly increased. The limited growth of grains was due to the sluggish diffusion effect of high entropy alloys (HEAs) and the pinning effect of the ultrafine precipitated phases. The dominant DRX process gradually changed from discontinuous dynamic recrystallization (DDRX) to continuous dynamic recrystallization (CDRX) with increasing deformation temperature and decreasing strain rate. Both of these DRX processes were promoted by the ultrafine precipitated phases. The dominant deformation mechanism at low deformation temperature and high strain rate was grain deformation. Grain boundary gliding became the dominant deformation mechanism at higher deformation temperature and lower strain rate, but it was inhibited to some extent by grain growth and the ultrafine precipitated phases distributed at grain boundaries.
机译:在1100℃〜1300℃的变形温度范围内和应变速率范围的等温压缩试验,研究了由粉末冶金(p / m)制造的超细粒细粒耐火耐火性高熵合金(Rhea)的热变形行为。 0.0005 s〜(-1)0.5 s(-1)。电子反向散射衍射(EBSD)和透射电子显微镜(TEM)技术用于分析变形温度和应变速率对热变形过程中的流量应力行为和微观结构演化的影响。结果表明,流量应力表现出典型的动态重结晶(DRX)特性,但在1100℃和0.5℃(-1)变形条件下和1200℃和0.5秒(-1)变形条件下,表现出工作硬化特性。随着变形温度的增加和应变速率降低,最大压缩应力显着降低,平均晶粒尺寸也缓慢增加。谷物的有限生长是由于高熵合金(HEAS)的漫长扩散效果和超细沉淀相的钉效效应。主导DRX过程从不连续的动态再结晶(DDRX)逐渐改变为连续动态再结晶(CDRX),随着变形温度的增加和应变率降低。通过超细沉淀相促进这些DRX方法。低变形温度和高应变率下的主导变形机制是晶粒变形。晶界滑动变形在更高的变形温度和较低的应变率下的主导变形机制,但在一定程度上被晶粒生长和在晶界分布的超细沉淀相抑制。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第30期|140922.1-140922.10|共10页
  • 作者单位

    National Key Laboratory for Precision Hot Processing of Metals Harbin Institute of Technology Harbin 150006 PR China;

    National Key Laboratory for Precision Hot Processing of Metals Harbin Institute of Technology Harbin 150006 PR China;

    National Key Laboratory for Precision Hot Processing of Metals Harbin Institute of Technology Harbin 150006 PR China;

    National Key Laboratory for Precision Hot Processing of Metals Harbin Institute of Technology Harbin 150006 PR China;

    National Key Laboratory for Precision Hot Processing of Metals Harbin Institute of Technology Harbin 150006 PR China;

    National Key Laboratory for Precision Hot Processing of Metals Harbin Institute of Technology Harbin 150006 PR China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Refractory high-entropy alloy; Ultrafine grains; Dynamic recrystallization; Microstructural evolution; Grain boundary gliding;

    机译:耐火材料高熵合金;超细谷物;动态再结晶;微观结构演变;谷物边界滑翔;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号