首页> 外文期刊>Materials Science and Engineering >High entropy alloys - Tunability of deformation mechanisms through integration of compositional and microstructural domains
【24h】

High entropy alloys - Tunability of deformation mechanisms through integration of compositional and microstructural domains

机译:高熵合金 - 通过组成和微结构域的整合变形机制的可调性

获取原文
获取原文并翻译 | 示例
           

摘要

The paradigm shift of alloying approach that led to high entropy alloys (HEAs) is now well established. Although the initial years were dominated by equiatomic approach, recent years have seen expansion in non-equiatomic compositional space that can be termed as complex concentrated alloys (CCAs). These HEAs/CCAs provide opportunities for tunable performance by manipulating deformation mechanisms. Understanding has advanced to the point that certain aspects of core effects (entropy of mixing, lattice distortion, sluggish diffusion, and cocktail effect) can be critically examined. In addition, new aspects of metastability engineering and emergence of a wide range of processing strategies has put this field on an exponential growth path. In this review, we categorize the compositional and microstructural approaches that exhibit potential for a combination of shear induced phase transformation and twinning, thereby expanding beyond the slip based mechanisms. The emerging HEAs give greater flexibility for tailoring transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP), which have guided design of next-generation steels over the last 20 years to a new level. For TRIP HEAs, the ductility can be extended to as high as 50% while maintaining a strength exceeding 1 GPa. On the other hand, hierarchical microstructural engineering in Al_xCoCrFeNi alloys can lead to over 2 GPa strength and >10% ductility. Observations of evolving c/a ratio in HCP phase of certain HEAs hint at possibility of new micromechanisms. While crack tip twin-bridging has been shown as a key mechanism to extend the toughness, concurrent phase transformation at the crack tip has been shown to push the fatigue endurance limit. Tunability of deformation mechanisms in HEAs is unprecedented as compared to the conventional metallic materials, particularly in compositions that exhibit shear induced transformation. The opportunities can be further enhanced by integrating the compositional and microstructure domains, and these aspects are highlighted in this review. The microstructural tailoring can take advantage of high enthalpy states in metastable HEAs with low stacking fault energy values of < 40 mJ m~(-2). The range of microstructural engineering in HEAs include, heterogeneous grain structure, duplex and triplex microstructures with intermetallic phases, twinning engineered microstructure, coherent boundary engineered microstructure, and dual-phase and triple-phase microstructure with solid solution phases.
机译:LED为高熵合金(HEAS)的合金化方法的范式转移现已完善。虽然最初的岁月是由赤缺论的占主导地位,但近年来已经看到了可以称为复合浓缩合金(CCA)的非赤级成分空间中的扩增。这些HEAS / CCA通过操纵变形机制提供可调性能的机会。理解已经前进到了核心效应的某些方面(混合熵,晶格畸变,缓慢扩散和鸡尾酒效应)的某些方面可以批判性地检查。此外,亚稳性工程的新方面和各种加工策略的出现已经在指数增长路径上放置了这一领域。在本文中,我们将表现出剪切诱导的相变和孪晶组合的组成和微观结构方法分类,从而扩展超出基于滑动的机制。新兴HEA具有更大的灵活性,可剪裁转化诱导的可塑性(行程)和孪生诱导的可塑性(TWIP),该诱导的可塑性(TWIP)在过去的20年里导致下一代钢的设计成为一个新的水平。对于批赛动,延展性可以延伸至高达50%,同时保持超过1GPa的强度。另一方面,Al_Xcocrofeni合金中的分层微结构工程可导致超过2GPa强度和> 10%的延展性。在新微机构的可能性下观察某些遗址HCP阶段的C / A比率的观察。虽然已经显示出裂纹尖端双桥接作为延伸韧性的关键机制,但已经显示了裂缝尖端的并发相变,以推动疲劳耐久性极限。与常规金属材料相比,HEA的变形机制的可调节性是前所未有的,特别是在表现出剪切诱导的转化的组合物中。通过整合组成和微观结构域可以进一步增强机会,并在本综述中突出了这些方面。微观结构剪裁可以利用亚料释放的高焓状态,具有<40 MJ M〜(-2)的低堆叠故障能量值。 HEA中的微观结构工程范围包括,异质晶粒结构,双链体和三重组织微结构,具有金属间相,孪晶工程微观结构,相干边界工程微观结构,以及具有固溶体相的双相和三相微观结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号