首页> 外文期刊>Materials Science and Engineering >Systematic exploration of the L-PBF processing behavior and resulting properties of β-stabilized Ti-alloys prepared by in-situ alloy formation
【24h】

Systematic exploration of the L-PBF processing behavior and resulting properties of β-stabilized Ti-alloys prepared by in-situ alloy formation

机译:通过原位合金形成制备的β-稳定的Ti合金的L-PBF加工行为和所得性能的系统探索

获取原文
获取原文并翻译 | 示例
           

摘要

Aim of this work is to gain a comprehensive understanding of the effects of an increasing β-phase stability of Ti-alloys on the L-PBF processing behavior. For this purpose, seven different Ti-alloys with an increasing concentration of the β-phase stabilizing elements Fe and V were prepared by L-PBF and in-situ alloy formation. The Molybdenum equivalent (Mo_(eq)) of the examined alloys, as a measure of β-phase stability, was varied systematically between -3.3 and 25. It is shown that a homogeneous distribution of elements is achievable by in-situ alloying. The experiments prove that the investigated alloys can be processed by a single L-PBF parameter set with high relative density above 99.8%. This finding is substantiated by calculated thermo-physical material properties and an analytical model. To understand the underlying metallurgical effects governing the L-PBF results, the samples were investigated extensively by EDS, EBSD, XRD, light microscopy and compression tests. The (β-phase fraction varies in dependence of the Mo_(eq) between 0% and 99%. Because of rapid solidification inherent in L-PBF a Mo_(eq) of 10 is sufficient to receive more than 90% β-phase. The same amount of β-phase after furnace cooling was only observed in alloys with Mo_(eq) of 20 or more. While all alloy compositions can be processed with high relative density of over 99.8%, alloys with a Mo_(eq) between 15 and 20 show a brittle material behavior in as-built state, resulting in cracking during L-PBF. This behavior is attributed to the formation of co-phase during L-PBF. In contrast, the highest p-stabilized alloy with a nominal Mo_(eq) of 25 exhibits a very high ductility with a fracture strain exceeding 50%.
机译:这项工作的目的是全面了解β相稳定性对L-PBF加工行为的β相稳定性的影响。为此目的,通过L-PBF和原位合金形成制备七种不同的Ti合金,其含有β相稳定元件Fe和V的浓度增加。所检查合金的钼当量(Mo_(eq))作为β相稳定性的量度,系统地在-3.3和25之间变化。结果表明,通过原位合金化可以实现元素的均匀分布。实验证明,所研究的合金可以通过高于99.8%的高相对密度的单个L-PBF参数集处理。该发现是通过计算的热物理材料特性和分析模型来证实。要了解L-PBF结果的潜在冶金效果,通过EDS,EBSD,XRD,光学显微镜和压缩测试广泛研究样品。 (β相级分依赖于0%至99%之间的MO_(eQ)而变化。由于L-PBF中固有的快速凝固,10的MO_(EQ)足以获得超过90%的β相。炉冷却后的相同量的β相仅在20以上的MO_(EQ)中观察到。虽然所有合金组合物可以以超过99.8%的高相对密度加工,但在15之间的合金(Eq)之间的合金图20显示了在L-PBF期间的脆性物质行为,导致L-PBF期间的裂缝。这种行为归因于L-PBF期间的共相。相反,具有标称MO_的最高的P稳定合金(EQ)25的延展性具有超过50%的裂缝菌株。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第22期|141374.1-141374.16|共16页
  • 作者单位

    Institute of Photonic Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Konrad-Zuse-Straβe 3/5 91052 Erlangen Germany Erlangen Graduate School in Advanced Optical Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Paul-Gordan-Straβe 6 91052 Erlangen Germany Collaborative Research Center 814: Additive Manufacturing Friedrich-Alexander-Universitaet Erlangen-Nuernberg Am Weichselgarten 9 91058 Erlangen Germany;

    Collaborative Research Center 814: Additive Manufacturing Friedrich-Alexander-Universitaet Erlangen-Nuernberg Am Weichselgarten 9 91058 Erlangen Germany Institute of Manufacturing Technology Friedrich-Alexander-Universitaet Erlangen-Nurnberg Egerlandstraβe 13 91058 Erlangen Germany;

    Institute of Photonic Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Konrad-Zuse-Straβe 3/5 91052 Erlangen Germany;

    Institute of Photonic Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Konrad-Zuse-Straβe 3/5 91052 Erlangen Germany Erlangen Graduate School in Advanced Optical Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Paul-Gordan-Straβe 6 91052 Erlangen Germany Collaborative Research Center 814: Additive Manufacturing Friedrich-Alexander-Universitaet Erlangen-Nuernberg Am Weichselgarten 9 91058 Erlangen Germany;

    Department of Engineering and Physics Karlstad University 651 88 Karlstad Sweden;

    Erlangen Graduate School in Advanced Optical Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Paul-Gordan-Straβe 6 91052 Erlangen Germany Collaborative Research Center 814: Additive Manufacturing Friedrich-Alexander-Universitaet Erlangen-Nuernberg Am Weichselgarten 9 91058 Erlangen Germany Institute of Manufacturing Technology Friedrich-Alexander-Universitaet Erlangen-Nurnberg Egerlandstraβe 13 91058 Erlangen Germany;

    Institute of Photonic Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Konrad-Zuse-Straβe 3/5 91052 Erlangen Germany Erlangen Graduate School in Advanced Optical Technologies Friedrich-Alexander-Universitaet Erlangen-Nuernberg Paul-Gordan-Straβe 6 91052 Erlangen Germany Collaborative Research Center 814: Additive Manufacturing Friedrich-Alexander-Universitaet Erlangen-Nuernberg Am Weichselgarten 9 91058 Erlangen Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Additive manufacturing; Laser powder bed fusion (L-PBF); Titanium alloys; Laser materials processing; In-situ alloy formation; Mechanical properties;

    机译:添加剂制造;激光粉床融合(L-PBF);钛合金;激光材料加工;原位合金形成;机械性能;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号