...
首页> 外文期刊>Materials Science and Engineering >Interfacial deformation and failure mechanisms at the single-splat length scale revealed in-situ by indentation of cold sprayed aluminum microparticles
【24h】

Interfacial deformation and failure mechanisms at the single-splat length scale revealed in-situ by indentation of cold sprayed aluminum microparticles

机译:单桩长度尺度的界面变形和失效机制通过冷喷涂铝微粒的压痕显示出原位

获取原文
获取原文并翻译 | 示例
           

摘要

Cold spray deposition exploits the phenomenon of impact bonding for solid-state consolidation of metallic microparticles. However, the particle interfaces in the deposits are susceptible to crack propagation under mechanical stresses, which results in inferior ductility. In this work, we seek to develop insights into splat-substrate interface bonding by in-situ micromechanical investigations. A miniaturized mechanical testing approach is reported here, which relies on micromachining, targeted indentation, and real-time scanning electron microscopy to probe deformation and failure at buried interfaces. Investigations at the "single splat length scale" enabled us to distinguish deformation mechanisms associated with 6061Al splats with globular and pancake-shaped morphologies. We observed a transition from mechanical interlocking to metallurgical bonding with an increase in the degree of particle flattening during deposition. The mechanically interlocked splats debond from the substrate via crack propagation and splat sliding. On the other hand, metallurgically bonded splats do not fail under indentation stresses exceeding 380 MPa; instead, displaying shear band propagation and pile-up mechanisms. A four-fold enhancement in the critical stress for crack propagation in mechanically-interlocked splats is achieved after a two-step annealing-aging heat-treatment cycle. We demonstrate that interface bonding plays a more dominant role than the inherent plasticity of splats in influencing bulk deposits' ductility, underscoring the importance of interface engineering in cold sprayed materials.
机译:冷喷雾沉积利用用于固态固结金属微粒的冲击键的现象。然而,沉积物中的颗粒界面易于在机械应力下裂纹繁殖,这导致延展性较差。在这项工作中,我们寻求通过原位微机械调查开发对Splat基板接口粘合的见解。在此报告了一种小型化的机械测试方法,其依赖于微机械,靶向凹陷和实时扫描电子显微镜,以探测埋地界面的变形和故障。在“单分裂长度尺度”的调查使我们能够区分与6061al Splats相关的变形机制,具有球状和煎饼形形态。我们观察到从机械互锁到冶金键合的过渡,随着沉积期间的颗粒扁平度的增加而增加。通过裂纹传播和Splat滑动从基板上机械互锁的Splats借助。另一方面,冶金键合的Splats在压痕应力下不会失效超过380MPa;相反,显示剪切带传播和堆积机制。在双步退火 - 老化的热处理循环之后,实现了在机械互锁的Splats中的裂纹传播中的临界应力的四倍增强。我们证明界面粘接比SPLATS在影响散装沉积物的延展性方面的固有可塑性发挥更大的作用,强调了在冷喷涂材料中界面工程的重要性。

著录项

  • 来源
    《Materials Science and Engineering》 |2021年第8期|141828.1-141828.10|共10页
  • 作者单位

    Department of Mechanical and Materiab Engineering Florida International University 10555 West Flagler Street Miami FL 33174 USA;

    Department of Mechanical and Materiab Engineering Florida International University 10555 West Flagler Street Miami FL 33174 USA;

    Department of Mechanical and Materiab Engineering Florida International University 10555 West Flagler Street Miami FL 33174 USA;

    Department of Mechanical and Materiab Engineering Florida International University 10555 West Flagler Street Miami FL 33174 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Cold spray; Splats; In-situ indentation; Interface bonding; Deformation mechanisms;

    机译:冷喷雾;Splats;原位缩进;界面粘合;变形机制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号