...
首页> 外文期刊>Materials Science and Engineering >High hydrogen uptake by a metal-graphene-microporous carbon network
【24h】

High hydrogen uptake by a metal-graphene-microporous carbon network

机译:金属 - 石墨烯 - 微孔碳网络的高氢吸收

获取原文
获取原文并翻译 | 示例
           

摘要

High-surface area carbon nanomaterials are promising candidate as reversible physisorption materials for hydrogen storage in personal transportation vehicles at moderate temperatures and pressures. Metal-incorporated graphitic microporous carbon is considered to be an excellent H_2 storage material due to high molecular hydrogen uptake at the micropores coupled with considerable H_2 adsorption at the graphitic network. A simple, cost-effective sputtering technique is adopted to fabricate metal-incorporated graphitic microporous carbon film and differential resistance measurements are carried out in H_2 ambient to observe the high hydrogen uptake within the samples. Ultrathin amorphous carbon film is irradiated with metal nanoparticles which converts it into graphitic carbon, whereas sputtering plasma acts as dry-etchant to activate it into microporous carbon. Average number of graphene layer formation is observed to be dependent on sputtering parameters (current/voltage/time), which manifest bi-layer to multi-layer graphene sheets. With increase in the graphene layers, hydrogen adsorption also increases due to a four-fold effect - higher molecular hydrogen uptake at the graphene layers, more active sites into the micropores, promotion of molecular dissociation into atomic hydrogen by the metal nanoparticles, followed by adsorption at the active surface sites and the formation of hydrogenated carbon via destruction of the π-bonds.
机译:高表面积碳纳米材料是候选者,作为可逆的物理吸附材料,适用于中等温度和压力的个人运输车辆中的储氢。由于在石墨网络上具有相当大的H_2吸附,金属掺入的石墨微孔碳被认为是优异的H_2储存材料由于微孔的高分子氢吸收。采用简单,经济高效的溅射技术来制造金属掺入的石墨微孔碳膜,在H_2环境中进行差分电阻测量,以观察样品内的高氢吸收。用金属纳米颗粒照射超薄的非晶碳膜,该金属纳米颗粒将其转化为石墨碳,而溅射等离子体充当干蚀刻剂以使其活化成微孔碳。观察到平均石墨烯层形成的数量取决于溅射参数(电流/电压/时间),其将双层发挥为多层石墨烯片。随着石墨烯层的增加,由于石墨烯层的四倍效应 - 更高的分子氢吸收,氢吸附也增加,更具活性位点进入微孔,通过金属纳米颗粒促进分子解离原子氢,然后吸附在活性表面位点和通过破坏π键的形成氢化碳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号