...
首页> 外文期刊>Materials science & engineering >Facile synthesis of multi-functional nano-composites by precise loading of Cu~(2+) onto MgO nano-particles for enhanced osteoblast differentiation, inhibited osteoclast formation and effective bacterial killing
【24h】

Facile synthesis of multi-functional nano-composites by precise loading of Cu~(2+) onto MgO nano-particles for enhanced osteoblast differentiation, inhibited osteoclast formation and effective bacterial killing

机译:通过将Cu〜(2+)的精确加载到MgO纳米颗粒中的多功能纳米复合材料的容纳合成,以增强成骨细胞分化,抑制破骨细胞形成和有效的细菌杀伤

获取原文
获取原文并翻译 | 示例
           

摘要

Biomaterials with multi-functions including enhancing osteogenesis, inhibiting osteoclastogenesis and effectively removing bacteria are urgently needed in the treatment of osteoporotic bone defects. In this study, MgO nano-particles were employed as a platform for precise Cu2+ loading. By immersing MgO into CuSO4 solution with a pre-defined concentration (0.1, 1 or 10 mM), 1 mg MgO adsorbed 3.25, 32.5 or 325 mu g Cu2+ from the solution. As-synthesized nano-composites were referred as MgO-0.1Cu, MgO-1Cu or MgO-10Cu depending on the concentration of employed CuSO4 solution. The results revealed that MgO-xCu (x = 0.1, 1 and 10) nano-composites were lamella-shaped and composed of amorphous Cu(OH)(2), crystalline Mg(OH)(2) and minor MgO. The extra-cellular release of Cu2+ was rather limited due the capture of Cu2+ by Mg(OH)(2). In vitro results revealed that MgO-xCu (x = 0.1, 1 and 10) nano-composites modulated osteoblast, osteoclast and bacterium response in a Cu2+ loading amount-dependent manner. MgO-0.1Cu nano-composite exhibited stimulatory function on osteo-blast proliferation without influencing osteoblast maturation, osteoclast formation and bacterial survival. MgO-1Cu nano-composite enhanced osteoblast proliferation and differentiation, inhibited osteoclast formation and effectively killed bacteria. When larger amount of Cu2+ was loaded, MgO-10Cu nano-composite exhibited stronger stimulatory effect on osteoblast maturation, enhanced inhibitory function on osteoclast formation and promoted bactericidal performance, although it showed a certain degree of initial cyto-toxicity. Together, the results suggest that MgO nano-particles could be employed as potential platform for precise Cu2+ loading and intracellular Cu2+ delivery. MgO-xCu (x = 1 and 10) nano-composites are promising to be employed as multi-functional fillers in bone tissue engineering scaffolds for osteoporotic bone regeneration.
机译:在治疗骨质疏松骨缺陷时,迫切需要具有增强成骨发生,抑制骨细胞发生和有效除去细菌的多功能的生物材料。在该研究中,MgO纳米颗粒用作精确Cu2 +载荷的平台。通过将MgO浸入CUSO4溶液中,用预定浓度(0.1,1或10mm),1mg MgO吸附3.25,32.5或325μgCu 2 +。根据所用的CuSO4溶液的浓度,如合成的纳米复合材料称为MgO-0.1Cu,MgO-1Cu或MgO-10Cu。结果表明,MgO-Xcu(x = 0.1,1和10)纳米复合材料是薄片形状的,由无定形Cu(OH)(2),结晶Mg(OH)(2)和次要MgO组成。 Cu2 +的细胞释放是由于捕获Cu 2 +通过Mg(OH)(2)而受到限制。体外结果显示,MgO-Xcu(x = 0.1,1和10)以Cu 2 +加载量依赖性方式调节骨灌注,破骨细胞和细菌反应。 MgO-0.1Cu纳米复合材料表现出溶血性功能对骨开胃增殖,而不会影响成骨细胞成熟,破骨细胞形成和细菌存活。 MgO-1Cu纳米复合材料增强了成骨细胞增殖和分化,抑制了破骨细胞形成和有效杀死的细菌。当加载较大量的Cu 2+时,MgO-10Cu纳米复合材料对成骨细胞成熟具有更强的刺激作用,增强了骨质体形成的抑制功能,促进了杀菌性能,尽管它显示出一定程度的初始毒性。结果表明,MgO纳米颗粒可用作精确Cu2 +载荷和细胞内Cu2 +递送的潜在平台。 MgO-XCU(X = 1和10)纳米复合材料具有骨组织工程支架中的多功能填料,用于骨质疏松骨再生。

著录项

  • 来源
    《Materials science & engineering》 |2021年第11期|112442.1-112442.11|共11页
  • 作者单位

    Cent South Univ State Key Lab Powder Met Changsha 410083 Peoples R China;

    Cent South Univ State Key Lab Powder Met Changsha 410083 Peoples R China;

    Cent South Univ Xiangya Hosp Dept Pharm Changsha 410008 Peoples R China;

    Cent South Univ Xiangya Hosp 2 Dept Orthoped Changsha 410011 Peoples R China;

    Cent South Univ Xiangya Hosp 3 Dept Pediat Changsha 410013 Peoples R China;

    Cent South Univ Xiangya Hosp 2 Dept Neurosurg Changsha 410013 Peoples R China;

    Hunan Univ Coll Biol Changsha 410082 Hunan Peoples R China;

    Cent South Univ State Key Lab Powder Met Changsha 410083 Peoples R China|Foshan Southern China Inst New Mat Foshan 528200 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    MgO nano-particles; Copper; Osteoblasts; Osteoclasts; bacteria;

    机译:MgO纳米颗粒;铜;成骨细胞;骨质骨液;细菌;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号