首页> 外文期刊>Materials Science & Engineering >Lanthanum chromite based perovskites for oxygen transport membrane
【24h】

Lanthanum chromite based perovskites for oxygen transport membrane

机译:基于亚铬酸镧的钙钛矿用于氧气传输膜

获取原文
获取原文并翻译 | 示例
           

摘要

Judicious selection of mixed ionic-electronic conducting (MIEC) perovskite oxide as oxygen transport membrane (OTM) offers the potential to enhance overall process economics and systems performance for a wide variety of industrial applications ranging from clean and efficient energy conversion (oxy-combustion) to selective gas separation (high purity oxygen production) and value added chemicals (syngas and liquid fuel) production with near-zero greenhouse gas emissions. Doped lanthanum chromite perovskites have been considered as promising material of choice for oxygen transport membrane (OTM) due to their superior thermo-chemical stability in aggressive environment (800-1000 ℃, 0.21-10~(-20) P_(O_2)) than the other mixed ionic-electronic conducting (MIEC) perovskites such as ferrites and cobaltite's. Thermo-physical properties of the lanthanum chromite, required for optimum oxygen transport can be tuned by modifying the crystal structure, chemical bonding, and ionic and electronic transport properties through selection of dopant's type and level. A perspective on the development of lanthanum chromite-based oxygen transport membranes is presented with an insight based on the pertinent literature and data analysis. The role of various A- and B-site dopants on the crystal structure, densification, thermal expansion, electrical transport, oxygen permeation, mechanical properties, and thermochemical stability of lanthanum chromite is discussed to enlighten 'composition-structure-property' correlations. It has been found that: the preferred dopants are strontium at A-site and manganese, nickel, iron, and titanium at B-site to obtain the desired thermo-chemo-electro-mechano properties. Challenges for long term performance and structural stability of doped lanthanum chromite as an oxygen transport membrane are outlined for the applications under 'real system' exposure conditions.
机译:明智地选择混合离子电导(MIEC)钙钛矿氧化物作为氧气传输膜(OTM),具有提高整个过程经济性和系统性能的潜力,适用于从清洁高效能源转换(氧燃烧)等多种工业应用选择性气体分离(高纯度氧气生产)和增值化学品(合成气和液体燃料)生产,温室气体排放量几乎为零。掺杂的亚铬酸镧钙钛矿因其在侵蚀性环境(800-1000℃,0.21-10〜(-20)P_(O_2))中优异的热化学稳定性而被认为是氧传输膜(OTM)的有前途的材料。其他混合的离子电子导电(MIEC)钙钛矿,例如铁氧体和钴矿。可以通过选择掺杂剂的类型和含量来改变晶体结构,化学键以及离子和电子传输性能,从而调节最佳氧传输所需的亚铬酸镧的热物理性能。基于相关文献和数据分析,提出了基于亚铬酸镧的氧传输膜发展的观点。讨论了各种A位和B位掺杂剂对亚铬酸镧的晶体结构,致密化,热膨胀,电迁移,氧渗透,机械性能和热化学稳定性的作用,以启发“组成-结构-性质”的相关性。已经发现:优选的掺杂剂是在A位的锶和在B位的锰,镍,铁和钛,以获得所需的热化学电机械性能。对于“真实系统”暴露条件下的应用,概述了掺杂的亚铬酸镧作为氧气传输膜的长期性能和结构稳定性方面的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号