首页> 外文期刊>Materials Science Research International >Aperture of Granite Fracture and Effects for Fluid Flow
【24h】

Aperture of Granite Fracture and Effects for Fluid Flow

机译:花岗岩断裂的孔径及其对流体流动的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Fluid flow in rock mass is controlled by geometry of fractures which is mainly characterized by roughness, aperture and orientation. In this study we measure the aperture of rock fractures using a high resolution confocal laser scanning microscope (CLSM). Digital images of the aperture are acquired under applying five stages of uniaxial normal stresses. The error range is less than 0.125 μm. It has been difficult to check the aperture change under stress application for the same specimen continuously. Our method can characterize the response of aperture. Results of measurements show that roughness geometry of fracture bears no uniform aperture. That is, it is changed in non-uniform manner under the different stress levels: Some parts bear a smaller aperture because of the applied stress, while some parts with very narrow aperture develop new cracks or shear displacement because of no space of aperture reduction. Laboratory permeability tests are also conducted to evaluate changes of permeability related to aperture variation due to different stress levels. The results do not imply a simple reduction of hydraulic conductivity under increase of the normal stress. This suggests that the mechanical aperture is different from the hydraulic aperture which is an effective conduit of fluid flow along a fracture. It is shown that the hydraulic aperture is slightly smaller than the mechanical aperture. Clearly the flow channels are changed due to the local change of geometry under the applied stress. The hydraulic conductivity does not follow the cubic law. This means that a parallel plate model is not suitable to express the hydraulic conductivity including local fracture geometry.
机译:岩体中的流体流动受裂缝几何形状的控制,裂缝的几何形状主要表现为粗糙度,孔径和方向。在这项研究中,我们使用高分辨率共聚焦激光扫描显微镜(CLSM)测量岩石裂缝的孔径。在施加五个阶段的单轴法向应力下获取光圈的数字图像。误差范围小于0.125μm。很难连续检查同一试样在应力作用下的孔径变化。我们的方法可以表征光圈的响应。测量结果表明,裂缝的粗糙度几何形状没有均匀的孔径。也就是说,它在不同的应力水平下以不均匀的方式变化:某些部分由于施加的应力而具有较小的孔径,而某些孔径非常狭窄的部件由于没有减小孔径的空间而产生新的裂纹或剪切位移。还进行了实验室渗透性测试,以评估由于应力水平不同而引起的与孔径变化有关的渗透性变化。结果并不意味着在法向应力增加的情况下水力传导率会简单降低。这表明机械孔不同于液压孔,液压孔是流体沿着裂缝流动的有效管道。示出了液压孔口比机械孔口略小。显然,由于在所施加的应力下几何形状的局部变化,流道发生了变化。水力传导率不遵循立方定律。这意味着平行板模型不适合表示包括局部裂缝几何形状在内的水力传导率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号