首页> 外文期刊>Mathematical Problems in Engineering >Hysteresis Phenomenon in the Galloping of the D-Shape Iced Conductor
【24h】

Hysteresis Phenomenon in the Galloping of the D-Shape Iced Conductor

机译:D形冰导体疾驰时的磁滞现象

获取原文
获取原文并翻译 | 示例
           

摘要

It is well known that there is a hysteresis phenomenon in the amplitude variation in the iced conductor galloping with the wind velocity, which will have more obvious disadvantages to the overhead transmission lines. But hysteresis characteristics in the conductor galloping have not received much attention. In this paper, a continuum model of the conductor galloping with D-shape ice is derived by using Hamilton principle, where the initial deformation, the geometric nonlinearity caused by the large deformation, and the aerodynamic nonlinearity are considered. The aerodynamic forces are described by using the quasi steady hypothesis, where the aerodynamic coefficients are expanded by the polynomial curves with a third order and a ninth order, respectively. The hysteresis phenomenon is analyzed by using the approximate solutions of the Galerkin discretized equation derived from the continuum model by means of the harmonic balance method. The influence of the different factors, dynamic angle of attack, span length, initial tension, and conductor mass, is obtained in different galloping instability intervals. And two important aspects about the point of the hysteresis phenomenon onset and the size of the hysteresis region over the wind velocities are analyzed under different conditions.
机译:众所周知,在随​​风速疾驰的冰导体中,振幅变化中存在磁滞现象,这对架空输电线路将具有更明显的缺点。但是,导体疾驰中的磁滞特性并未引起足够的重视。本文利用汉密尔顿原理,推导了D形冰在导体上疾驰的连续模型,其中考虑了初始变形,大变形引起的几何非线性以及空气动力学非线性。通过使用准稳态假设来描述空气动力,其中空气动力学系数分别通过多项式曲线以三阶和九阶展开。通过使用谐波平衡法,使用从连续体模型导出的Galerkin离散方程的近似解来分析磁滞现象。在不同的舞动不稳定性区间中,可以得到不同因素的影响,动态攻角,跨距长度,初始张力和导体质量。并分析了在不同条件下磁滞现象的发作点和风速上磁滞区域的大小的两个重要方面。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2013年第14期|784239.1-784239.11|共11页
  • 作者单位

    China Electric Power Research Institute, Beijing 100192, China;

    China Electric Power Research Institute, Beijing 100192, China;

    China Electric Power Research Institute, Beijing 100192, China;

    China Electric Power Research Institute, Beijing 100192, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号