...
首页> 外文期刊>Mechanical systems and signal processing >Stability control of electric vehicles with in-wheel motors by considering tire slip energy
【24h】

Stability control of electric vehicles with in-wheel motors by considering tire slip energy

机译:考虑轮胎滑移能量的带轮电动机的电动汽车稳定性控制

获取原文
获取原文并翻译 | 示例
           

摘要

Tire wear and overuse are serious issues for four-in-wheel-motor-driven electric vehicles (FIWMD EVs). As a result, this paper proposes a hierarchical control framework to improve the safety of FIWMD EVs while save the tire slip energy (i.e. reduce the tire wear), which includes a linear quadratic regulator (LQR) in the outer layer and a holistic corner controller (HCC) in the inner layer. The LQR can highly improve the lateral stability of the vehicles under extreme conditions by producing an additional yaw moment and a front wheel steering angle. Whereas, the HCC can efficiently distribute the deviation of the longitudinal force and the additional yaw moment by a step-ahead prediction. In this framework, to reduce the tire slip energy, a semi-empirical tire slip energy model is developed and used for tuning the HCC controller. In this way, not only the lateral stability of such EVs can be ensured but also the tire slip energy can be reduced. More importantly, this paper compares the lateral stability and slip energy of the vehicle under lane change condition between four methods - without control, traditional axis distribution, tire workload usage and tire slip energy. The results demonstrate that the proposed controller presents an excellent control capability. In addition, different from the widely used axis load distribution, the longitudinal velocity of the proposed method is more stable. More importantly, the tire slip power and energy are much smaller than others. It achieves 16.62% reduction of the tire slip energy. (C) 2018 Elsevier Ltd. All rights reserved.
机译:对于四轮电动机驱动的电动汽车(FIWMD EV),轮胎磨损和过度使用是严重的问题。因此,本文提出了一种分层控制框架,以提高FIWMD电动汽车的安全性,同时节省轮胎打滑能量(即减少轮胎磨损),其在外层包括一个线性二次调节器(LQR)和一个整体拐角控制器。 (HCC)在内层。 LQR通过产生额外的偏航力矩和前轮转向角,可以在极端条件下极大地提高车辆的横向稳定性。而HCC可以通过提前预测有效地分配纵向力和附加偏航力矩的偏差。在此框架中,为减少轮胎滑移能量,开发了半经验轮胎滑移能量模型,并将其用于调整HCC控制器。以这种方式,不仅可以确保这种EV的横向稳定性,而且可以减小轮胎滑移能量。更重要的是,本文比较了四种方法(无控制,传统的轴分配,轮胎工作负荷使用和轮胎滑移能量)之间在换道条件下车辆的横向稳定性和滑移能量。结果表明,所提出的控制器具有良好的控制能力。此外,不同于广泛使用的轴载荷分布,该方法的纵向速度更稳定。更重要的是,轮胎的打滑能力和能量比其他轮胎小得多。减少了轮胎打滑能量16.62%。 (C)2018 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号