...
首页> 外文期刊>Mechanical systems and signal processing >A 3-DOF piezoelectric driven nanopositioner: Design, control and experiment
【24h】

A 3-DOF piezoelectric driven nanopositioner: Design, control and experiment

机译:3-DOF压电驱动纳米定位器:设计,控制和实验

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a novel 3-degree-of-freedom (DOF) nanopositioner was investigated in order to position objects with nanometer scale accuracy. Nanopositioners are used in a variety of real-world applications, e.g. biomedical technology and nanoassembly. In this work, a nanopositioner was firstly designed with the flexure diaphragm guider, capacitive sensors and walking piezoelectric actuators. The specifically designed monolithic flexure diaphragm guider was able to significantly restrict motions in the other unwanted directions. The walking piezoelectric actuator can enable the developed nanopositioner to have nanometer scale positioning accuracy and a large travel range. Then a closed-loop sliding mode control strategy was developed to overcome the effect of the actuator's speed non-linearity and its stability was analysed based on Lyapunov theory. Finally, experiments focused on coupling displacement and point-to-point movement were conducted. The observed results revealed that the ratio of coupling displacement to Z displacement was less than 0.1%, which means that the coupling displacement was less than 120 nm during the Z direction travel range of the nanopositioner from -80 μm to 80 μm. Moreover, the positioning accuracy in the Z direction of point-to-point movement was within 10 nm and the dynamic response settled within 0.2 s. Therefore, the experimental results showed that the novel piezoelectric driven nanopositioner has excellent performance in terms of coupling displacement and nanometer scale accuracy for point-to-point movement.
机译:本文研究了一种新的3-自由度(DOF)纳米沉积蛋白,以便将物体与纳米级精度定位。纳米定位器用于各种现实世界应用中,例如,生物医学技术和纳米组织。在这项工作中,首先使用弯曲膜片导向器,电容传感器和行走压电致动器设计纳米定位器。专门设计的单片挠性膜导向器能够在其他不需要的方向上显着限制运动。行走压电致动器可以使开发的纳米定位器具有纳米级定位精度和大的行程范围。然后开发了闭环滑模控制策略以克服致动器的速度非线性的效果,并且基于Lyapunov理论分析了其稳定性。最后,进行了专注于耦合位移和点对点运动的实验。所观察结果表明,偶联对Z位移的耦合比例小于0.1%,这意味着在纳米末期的Z方向行进范围内的偶联位移在-80μm至80μm的Z方向行驶范围内小于120nm。此外,点对点移动的Z方向上的定位精度在10nm内,并且动态响应在0.2秒内沉降。因此,实验结果表明,新型压电驱动纳米定位器在耦合位移和纳米级精度方面具有优异的性能,以进行点对点运动。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2021年第6期|107603.1-107603.14|共14页
  • 作者单位

    Department of Electrical and Electronic Engineering The University of Manchester Manchester MI3 9PL UK School of Computing and Engineering The University of Gloucestershire The Park Cheltenham GL50 2RH UK;

    Changchun Institute of Optics Fine Mechanics and Physics Chinese Academy of Sciences Changchun 130033 China;

    Department of Electrical and Electronic Engineering The University of Manchester Manchester MI3 9PL UK;

    Department of Electrical and Electronic Engineering The University of Manchester Manchester MI3 9PL UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Nanopositioner; Walking piezoelectric actuator; Sliding mode control; Flexure; Coupling displacement;

    机译:纳米定位器;行走压电执行器;滑模控制;弯曲;耦合位移;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号