首页> 外文期刊>Mechanical systems and signal processing >Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation
【24h】

Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation

机译:腿部机器人的分数阶主动容错力位置控制器设计,使用具有未知偏置和增益降级的饱和致动器

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a novel fault accommodation strategy is proposed for the legged robots subject to the actuator faults including actuation bias and effective gain degradation as well as the actuator saturation. First, the combined dynamics of two coupled subsystems consisting of the dynamics of the legs subsystem and the body subsystem are developed. Then, the interaction of the robot with the environment is formulated as the contact force optimization problem with equality and inequality constraints. The desired force is obtained by a dynamic model. A robust super twisting fault estimator is proposed to precisely estimate the defective torque amplitude of the faulty actuator in finite time. Defining a novel fractional sliding surface, a fractional nonsingular terminal sliding mode control law is developed. Moreover, by introducing a suitable auxiliary system and using its state vector in the designed controller, the proposed fault-tolerant control (FTC) scheme guarantees the finite-time stability of the closed-loop control system. The robustness and finite-time convergence of the proposed control law is established using the Lyapunov stability theory. Finally, numerical simulations are performed on a quadruped robot to demonstrate the stable walking of the robot with and without actuator faults, and actuator saturation constraints, and the results are compared to results with an integer order fault-tolerant controller.
机译:本文针对腿部机器人的执行器故障,提出了一种新颖的故障适应策略,包括执行器偏置和有效增益衰减以及执行器饱和。首先,开发了由腿部子系统和身体子系统组成的两个耦合子系统的组合动力学。然后,将机器人与环境的相互作用公式化为具有相等和不平等约束的接触力优化问题。通过动态模型获得所需的力。提出了一种鲁棒的超扭曲故障估计器,以在有限的时间内精确估计故障执行器的故障转矩幅度。定义了新颖的分数滑动表面,发展了分数非奇异终端滑模控制律。此外,通过引入合适的辅助系统并在设计的控制器中使用其状态向量,所提出的容错控制(FTC)方案可确保闭环控制系统的有限时间稳定性。利用李雅普诺夫稳定性理论建立了所提出控制律的鲁棒性和有限时间收敛性。最后,在四足机器人上进行了数值模拟,以演示在有无执行器故障以及执行器饱和约束的情况下机器人的稳定行走情况,并将结果与​​带有整数阶容错控制器的结果进行比较。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号